ترغب بنشر مسار تعليمي؟ اضغط هنا

TWIST-GAN: Towards Wavelet Transform and Transferred GAN for Spatio-Temporal Single Image Super Resolution

146   0   0.0 ( 0 )
 نشر من قبل Fayaz Ali Dharejo
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from aremotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks(GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR). However, thegenerated image still suffers from undesirable artifacts such as, the absence of texture-feature representationand high-frequency information. We propose a frequency domain-based spatio-temporal remote sensingsingle image super-resolution technique to reconstruct the HR image combined with generative adversarialnetworks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporatingWavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image hasbeen split into various frequency bands by using the WT, whereas, the transfer generative adversarial networkpredicts high-frequency components via a proposed architecture. Finally, the inverse transfer of waveletsproduces a reconstructed image with super-resolution. The model is first trained on an external DIV2 Kdataset and validated with the UC Merceed Landsat remote sensing dataset and Set14 with each image sizeof 256x256. Following that, transferred GANs are used to process spatio-temporal remote sensing images inorder to minimize computation cost differences and improve texture information. The findings are comparedqualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of theGPU memory during training and accelerated the execution of our simplified version by eliminating batchnormalization layers.



قيم البحث

اقرأ أيضاً

68 - Minghan Fu , Huan Liu , Yankun Yu 2021
Hazy images are often subject to color distortion, blurring, and other visible quality degradation. Some existing CNN-based methods have great performance on removing homogeneous haze, but they are not robust in non-homogeneous case. The reasons are mainly in two folds. Firstly, due to the complicated haze distribution, texture details are easy to be lost during the dehazing process. Secondly, since the training pairs are hard to be collected, training on limited data can easily lead to over-fitting problem. To tackle these two issues, we introduce a novel dehazing network using 2D discrete wavelet transform, namely DW-GAN. Specifically, we propose a two-branch network to deal with the aforementioned problems. By utilizing wavelet transform in DWT branch, our proposed method can retain more high-frequency knowledge in feature maps. In order to prevent over-fitting, ImageNet pre-trained Res2Net is adopted in the knowledge adaptation branch. Owing to the robust feature representations of ImageNet pre-training, the generalization ability of our network is improved dramatically. Finally, a patch-based discriminator is used to reduce artifacts of the restored images. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively.
With the effective application of deep learning in computer vision, breakthroughs have been made in the research of super-resolution images reconstruction. However, many researches have pointed out that the insufficiency of the neural network extract ion on image features may bring the deteriorating of newly reconstructed image. On the other hand, the generated pictures are sometimes too artificial because of over-smoothing. In order to solve the above problems, we propose a novel self-calibrated convolutional generative adversarial networks. The generator consists of feature extraction and image reconstruction. Feature extraction uses self-calibrated convolutions, which contains four portions, and each portion has specific functions. It can not only expand the range of receptive fields, but also obtain long-range spatial and inter-channel dependencies. Then image reconstruction is performed, and finally a super-resolution image is reconstructed. We have conducted thorough experiments on different datasets including set5, set14 and BSD100 under the SSIM evaluation method. The experimental results prove the effectiveness of the proposed network.
High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is propose d to generate the super-resolution MR image from low-resolution magnetic resonance images, which can reduce the scanning time effectively but with high resolution MR images. In the framework of the FA-GAN, the local fusion feature block, consisting of different three-pass networks by using different convolution kernels, is proposed to extract image features at different scales. And the global feature fusion module, including the channel attention module, the self-attention module, and the fusion operation, is designed to enhance the important features of the MR image. Moreover, the spectral normalization process is introduced to make the discriminator network stable. 40 sets of 3D magnetic resonance images (each set of images contains 256 slices) are used to train the network, and 10 sets of images are used to test the proposed method. The experimental results show that the PSNR and SSIM values of the super-resolution magnetic resonance image generated by the proposed FA-GAN method are higher than the state-of-the-art reconstruction methods.
Many CT slice images are stored with large slice intervals to reduce storage size in clinical practice. This leads to low resolution perpendicular to the slice images (i.e., z-axis), which is insufficient for 3D visualization or image analysis. In th is paper, we present a novel architecture based on conditional Generative Adversarial Networks (cGANs) with the goal of generating high resolution images of main body parts including head, chest, abdomen and legs. However, GANs are known to have a difficulty with generating a diversity of patterns due to a phenomena known as mode collapse. To overcome the lack of generated pattern variety, we propose to condition the discriminator on the different body parts. Furthermore, our generator networks are extended to be three dimensional fully convolutional neural networks, allowing for the generation of high resolution images from arbitrary fields of view. In our verification tests, we show that the proposed method obtains the best scores by PSNR/SSIM metrics and Visual Turing Test, allowing for accurate reproduction of the principle anatomy in high resolution. We expect that the proposed method contribute to effective utilization of the existing vast amounts of thick CT images stored in hospitals.
In the recent years, there has been a significant improvement in the quality of samples produced by (deep) generative models such as variational auto-encoders and generative adversarial networks. However, the representation capabilities of these meth ods still do not capture the full distribution for complex classes of images, such as human faces. This deficiency has been clearly observed in previous works that use pre-trained generative models to solve imaging inverse problems. In this paper, we suggest to mitigate the limited representation capabilities of generators by making them image-adaptive and enforcing compliance of the restoration with the observations via back-projections. We empirically demonstrate the advantages of our proposed approach for image super-resolution and compressed sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا