ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Synonymous Referring Expressions via Contrastive Features

118   0   0.0 ( 0 )
 نشر من قبل Yi-Wen Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Referring expression comprehension aims to localize objects identified by natural language descriptions. This is a challenging task as it requires understanding of both visual and language domains. One nature is that each object can be described by synonymous sentences with paraphrases, and such varieties in languages have critical impact on learning a comprehension model. While prior work usually treats each sentence and attends it to an object separately, we focus on learning a referring expression comprehension model that considers the property in synonymous sentences. To this end, we develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels, where features extracted from synonymous sentences to describe the same object should be closer to each other after mapping to the visual domain. We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets, and demonstrate that our method performs favorably against the state-of-the-art approaches. Furthermore, since the varieties in expressions become larger across datasets when they describe objects in different ways, we present the cross-dataset and transfer learning settings to validate the ability of our learned transferable features.



قيم البحث

اقرأ أيضاً

Referring object detection and referring image segmentation are important tasks that require joint understanding of visual information and natural language. Yet there has been evidence that current benchmark datasets suffer from bias, and current sta te-of-the-art models cannot be easily evaluated on their intermediate reasoning process. To address these issues and complement similar efforts in visual question answering, we build CLEVR-Ref+, a synthetic diagnostic dataset for referring expression comprehension. The precise locations and attributes of the objects are readily available, and the referring expressions are automatically associated with functional programs. The synthetic nature allows control over dataset bias (through sampling strategy), and the modular programs enable intermediate reasoning ground truth without human annotators. In addition to evaluating several state-of-the-art models on CLEVR-Ref+, we also propose IEP-Ref, a module network approach that significantly outperforms other models on our dataset. In particular, we present two interesting and important findings using IEP-Ref: (1) the module trained to transform feature maps into segmentation masks can be attached to any intermediate module to reveal the entire reasoning process step-by-step; (2) even if all training data has at least one object referred, IEP-Ref can correctly predict no-foreground when presented with false-premise referring expressions. To the best of our knowledge, this is the first direct and quantitative proof that neural modules behave in the way they are intended.
A number of backpropagation-based approaches such as DeConvNets, vanilla Gradient Visualization and Guided Backpropagation have been proposed to better understand individual decisions of deep convolutional neural networks. The saliency maps produced by them are proven to be non-discriminative. Recently, the Layer-wise Relevance Propagation (LRP) approach was proposed to explain the classification decisions of rectifier neural networks. In this work, we evaluate the discriminativeness of the generated explanations and analyze the theoretical foundation of LRP, i.e. Deep Taylor Decomposition. The experiments and analysis conclude that the explanations generated by LRP are not class-discriminative. Based on LRP, we propose Contrastive Layer-wise Relevance Propagation (CLRP), which is capable of producing instance-specific, class-discriminative, pixel-wise explanations. In the experiments, we use the CLRP to explain the decisions and understand the difference between neurons in individual classification decisions. We also evaluate the explanations quantitatively with a Pointing Game and an ablation study. Both qualitative and quantitative evaluations show that the CLRP generates better explanations than the LRP. The code is available.
We focus on grounding (i.e., localizing or linking) referring expressions in images, e.g., ``largest elephant standing behind baby elephant. This is a general yet challenging vision-language task since it does not only require the localization of obj ects, but also the multimodal comprehension of context -- visual attributes (e.g., ``largest, ``baby) and relationships (e.g., ``behind) that help to distinguish the referent from other objects, especially those of the same category. Due to the exponential complexity involved in modeling the context associated with multiple image regions, existing work oversimplifies this task to pairwise region modeling by multiple instance learning. In this paper, we propose a variational Bayesian method, called Variational Context, to solve the problem of complex context modeling in referring expression grounding. Specifically, our framework exploits the reciprocal relation between the referent and context, i.e., either of them influences estimation of the posterior distribution of the other, and thereby the search space of context can be greatly reduced. In addition to reciprocity, our framework considers the semantic information of context, i.e., the referring expression can be reproduced based on the estimated context. We also extend the model to unsupervised setting where no annotation for the referent is available. Extensive experiments on various benchmarks show consistent improvement over state-of-the-art methods in both supervised and unsupervised settings.
75 - Zhuowan Li , Quan Tran , Long Mai 2020
While image captioning has progressed rapidly, existing works focus mainly on describing single images. In this paper, we introduce a new task, context-aware group captioning, which aims to describe a group of target images in the context of another group of related reference images. Context-aware group captioning requires not only summarizing information from both the target and reference image group but also contrasting between them. To solve this problem, we propose a framework combining self-attention mechanism with contrastive feature construction to effectively summarize common information from each image group while capturing discriminative information between them. To build the dataset for this task, we propose to group the images and generate the group captions based on single image captions using scene graphs matching. Our datasets are constructed on top of the public Conceptual Captions dataset and our new Stock Captions dataset. Experiments on the two datasets show the effectiveness of our method on this new task. Related Datasets and code are released at https://lizw14.github.io/project/groupcap .
The pre-trained neural models have recently achieved impressive performances in understanding multimodal content. However, it is still very challenging to pre-train neural models for video and language understanding, especially for Chinese video-lang uage data, due to the following reasons. Firstly, existing video-language pre-training algorithms mainly focus on the co-occurrence of words and video frames, but ignore other valuable semantic and structure information of video-language content, e.g., sequential order and spatiotemporal relationships. Secondly, there exist conflicts between video sentence alignment and other proxy tasks. Thirdly, there is a lack of large-scale and high-quality Chinese video-language datasets (e.g., including 10 million unique videos), which are the fundamental success conditions for pre-training techniques. In this work, we propose a novel video-language understanding framework named VICTOR, which stands for VIdeo-language understanding via Contrastive mulTimOdal pRe-training. Besides general proxy tasks such as masked language modeling, VICTOR constructs several novel proxy tasks under the contrastive learning paradigm, making the model be more robust and able to capture more complex multimodal semantic and structural relationships from different perspectives. VICTOR is trained on a large-scale Chinese video-language dataset, including over 10 million complete videos with corresponding high-quality textual descriptions. We apply the pre-trained VICTOR model to a series of downstream applications and demonstrate its superior performances, comparing against the state-of-the-art pre-training methods such as VideoBERT and UniVL. The codes and trained checkpoints will be publicly available to nourish further developments of the research community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا