ﻻ يوجد ملخص باللغة العربية
The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, displays surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kHz. We identify the competition between solutal and thermal Marangoni forces as origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrates side of the bubble, leading to a solutal Marangoni flow towards the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate which sucks the bubble towards it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.
In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids
Interfacial stability is important for many processes involving heat and mass transfer across two immiscible phases. When this transfer takes place in the form of evaporation of a binary solution with one component being more volatile than the other,
Marangoni instabilities can emerge when a liquid interface is subjected to a concentration or temperature gradient. It is generally believed that for these instabilities bulk effects like buoyancy are negligible as compared to interfacial forces, esp
Droplets can self-propel when immersed in another liquid in which a concentration gradient is present. Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified ethanol/water mixture: At first, th
Eutectic gallium-indium (EGaIn), a room-temperature liquid metal alloy, has the largest tension of any liquid at room temperature, and yet can nonetheless undergo fingering instabilities. This effect arises because, under an applied voltage, oxides d