ﻻ يوجد ملخص باللغة العربية
Reggeon field theory (RFT), originally developed in the context of high energy diffraction scattering, has a much wider applicability, describing, for example, the universal critical behavior of stochastic population models as well as probabilistic geometric problems such as directed percolation. In 1975 Suranyi and others developed cut RFT, which can incorporate the cutting rules of Abramovskii, Gribov and Kancheli for how each diagram contributes to inclusive cross-sections. In this note we describe the corresponding probabilistic interpretations of cut RFT: as a population model of two genotypes, which can reproduce both asexually and sexually; and as a kind of bicolor directed percolation problem. In both cases the AGK rules correspond to simple limiting cases of these problems.
In this paper we extend our recent non perturbative functional renormalization group analysis of Reggeon Field Theory to the interactions of Pomeron and Odderon fields. We establish the existence of a fixed point and its universal properties, which e
Can large distance high energy QCD be described by Reggeon Field Theory as an effective emergent theory? We start to investigate the issue employing functional renormalisation group techniques.
We develop a reformulation of the functional integral for bosons in terms of bilocal fields. Correlation functions correspond to quantum probabilities instead of probability amplitudes. Discrete and continuous global symmetries can be treated similar
A new formulation of four dimensional quantum field theories, such as scalar field theory, is proposed as a large N limit of a special NxN matrix model. Our reduction scheme works beyond planar approximation and applies for QFT with finite number of
We identify the nonlinear evolution equation in impact-parameter space for the Supercritical Pomeron in Reggeon Field Theory as a 2-dimensional stochastic Fisher and Kolmogorov-Petrovski-Piscounov equation. It exactly preserves unitarity and leads in