ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces: A Convex Optimization Approach

256   0   0.0 ( 0 )
 نشر من قبل Emilio Maddalena
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let a labeled dataset be given with scattered samples and consider the hypothesis of the ground-truth belonging to the reproducing kernel Hilbert space (RKHS) of a known positive-definite kernel. It is known that out-of-sample bounds can be established at unseen input locations, thus limiting the risk associated with learning this function. We show how computing tight, finite-sample uncertainty bounds amounts to solving parametric quadratically constrained linear programs. In our setting, the outputs are assumed to be contaminated by bounded measurement noise that can otherwise originate from any compactly supported distribution. No independence assumptions are made on the available data. Numerical experiments are presented to compare the present results with other closed-form alternatives.



قيم البحث

اقرأ أيضاً

Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u nder the translations associated with the elements of $G$. Under some additional technical assumptions, we study the W*-algebra $mathcal{V}$ of translation-invariant bounded linear operators acting on $H$. First, we decompose $mathcal{V}$ into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces $widehat{H}_xi$, $xiinwidehat{G}$, generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of $mathcal{V}$. Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to $mathcal{V}$, i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.
159 - Sneh Lata , Vern I. Paulsen 2010
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can be partitioned into finitely many Riesz basic sequences, then a general bounded Bessel sequence in an arbitrary Hilbert space can be partitioned into finitely many Riesz basic sequences. In addition, we examine some of these spaces and prove that for these spaces bounded Bessel sequences of normalized kernel functions are finite unions of Riesz basic sequences.
The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm fo r efficient numerical integration of functions reproduced by Gaussian kernels has not been fully solved. In this article we construct two classes of algorithms that use $N$ evaluations to integrate $d$-variate functions reproduced by Gaussian kernels and prove the exponential or super-algebraic decay of their worst-case errors. In contrast to earlier work, no constraints are placed on the length-scale parameter of the Gaussian kernel. The first class of algorithms is obtained via an appropriate scaling of the classical Gauss-Hermite rules. For these algorithms we derive lower and upper bounds on the worst-case error of the forms $exp(-c_1 N^{1/d}) N^{1/(4d)}$ and $exp(-c_2 N^{1/d}) N^{-1/(4d)}$, respectively, for positive constants $c_1 > c_2$. The second class of algorithms we construct is more flexible and uses worst-case optimal weights for points that may be taken as a nested sequence. For these algorithms we derive upper bounds of the form $exp(-c_3 N^{1/(2d)})$ for a positive constant $c_3$.
In this paper, we introduce the notion of reproducing kernel Hilbert spaces for graphs and the Gram matrices associated with them. Our aim is to investigate the Gram matrices of reproducing kernel Hilbert spaces. We provide several bounds on the entr ies of the Gram matrices of reproducing kernel Hilbert spaces and characterize the graphs which attain our bounds.
The geometry of spaces with indefinite inner product, known also as Krein spaces, is a basic tool for developing Operator Theory therein. In the present paper we establish a link between this geometry and the algebraic theory of *-semigroups. It goes via the positive definite functions and related to them reproducing kernel Hilbert spaces. Our concern is in describing properties of elements of the semigroup which determine shift operators which serve as Pontryagin fundamental symmetries

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا