ﻻ يوجد ملخص باللغة العربية
The transmission through a magnetic layer of correlated electrons sandwiched between non-interacting normal-metal leads is studied within model calculations. We consider the linear regime in the framework of the Meir-Wingreen formalism, according to which the transmission can be interpreted as the overlap of the spectral function of the surface layer of the leads with that of the central region. By analyzing these spectral functions, we show that a change of the coupling parameter between the leads and the central region significantly and non-trivially affects the conductance. The role of band structure effects for the transmission is clarified. For a strong coupling between the leads and the central layer, high-intensity localized states are formed outside the overlapping bands, while for weaker coupling this high-intensity spectral weight is formed within the leads continuum band around the Fermi energy. A local Coulomb interaction in the central region modifies the high-intensity states, and hence the transmission. For the present setup, the major effect of the local interaction consists in shifts of the band structure, since any sharp features are weakened due to the macroscopic extension of the configuration in the directions perpendicular to the transport direction.
Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which conf
We present a theory of current conduction through buckyball(C60) molecules on silicon by coupling a density functional treatment of the molecular levels embedded in silicon with a non-equilibrium Greens function (NEGF) treatment of quantum transport.
Motivated by recent experiments with proximitized nanowires, we study a mesoscopic s-wave superconductor connected via point contacts to normal-state leads. We demonstrate that at energies below the charging energy the system is described by the two-
We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of NiMnSb in the scattering region. We investigate the dependence of the transmission function computed within the local spin density approximati
We study I-V characteristics of an all-II-VI semiconductor resonant tunneling diode with dilute magnetic impurities in the quantum well layer. Bound magnetic polaron states form in the vicinity of potential fluctuations at the well interface while tu