ترغب بنشر مسار تعليمي؟ اضغط هنا

Versatile electronic states in epitaxial thin films of (Sn-Pb-In)Te: from topological crystalline insulator and polar semimetal to superconductor

173   0   0.0 ( 0 )
 نشر من قبل Ryutaro Yoshimi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial thin films of (Sn$_{x}$Pb$_{1-x}$)$_{1-y}$In$_{y}$Te were successfully grown by molecular-beam-epitaxy (MBE) in a broad range of compositions (0 $leq$ x $leq$ 1, 0 $leq$ y $leq$ 0.23). We investigated electronic phases of the films by the measurements of electrical transport and optical second harmonic generation. In this system, one can control the inversion of band gap, the electric polarization that breaks the inversion symmetry, and the Fermi level position by tuning the Pb/Sn ratio and In composition. A plethora of topological electronic phases are expected to emerge, such as topological crystalline insulator, topological semimetal, and superconductivity. For the samples with large Sn compositions (x > 0.5), hole density increases with In composition (y), which results in the appearance of superconductivity. On the other hand, for those with small Sn compositions (x < 0.5), increase in In composition reduces the hole density and changes the carrier type from p-type to n-type. In a narrow region centered at (x, y) = (0.16, 0.07) where the n-type carriers are slightly doped, charge transport with high mobility exceeding 5,000 cm$^{2}$V$^{-1}$s$^{-1}$ shows up, representing the possible semimetal states. In those samples, the optical second harmonic generation measurement shows the breaking of inversion symmetry along the out-of-plane [111] direction, which ensures the presence of polar semimetal state. The thin films of (Sn$_{x}$Pb$_{1-x}$)$_{1-y}$In$_{y}$Te materials systems with a variety of electronic states would become a promising materials platform for the exploration of novel quantum phenomena.



قيم البحث

اقرأ أيضاً

Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical state s exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.
Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr$_3$SnO is a topological crystalline insulator, a new electronic phas e of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations we design and implement a deposition approach to achieve the adsorption-controlled growth of epitaxial Sr$_3$SnO single-crystal films by molecular-beam epitaxy (MBE). In-situ transport and angle-resolved photoemission spectroscopy measurements reveal the metallic and non-trivial topological nature of the as-grown samples. Compared with conventional MBE, the synthesis route used results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of topological crystalline insulators opens opportunities to manipulate topological states by tuning symmetries via epitaxial strain and heterostructuring.
Pb$_{0.77}$Sn$_{0.23}$Se is a novel alloy of two promising thermoelectric materials PbSe and SnSe that exhibits a temperature dependent band inversion below 300 K. Recent work has shown that this band inversion also coincides with a trivial to nontri vial topological phase transition. To understand how the properties critical to thermoelectric efficiency are affected by the band inversion, we measured the broadband optical response of Pb$_{0.77}$Sn$_{0.23}$Se as a function of temperature. We find clear optical evidence of the band inversion at $160pm15$ K, and use the extended Drude model to accurately determine a $T^{3/2}$ dependence of the bulk carrier lifetime, associated with electron-acoustic phonon scattering. Due to the high bulk carrier doping level, no discriminating signatures of the topological surface states are found, although their presence cannot be excluded from our data.
We present inelastic neutron scattering results of phonons in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te powders, with $x=0$ and 0.3. The $x=0$ sample is a topological crystalline insulator, and the $x=0.3$ sample is a superconductor with a bulk supercon ducting transition temperature $T_c$ of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1--2.5 meV, suggestive of local modes. On cooling the superconducting sample through $T_c$, there is an enhancement of these features for energies below twice the superconducting-gap energy. We further note that the superconductivity in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te occurs in samples with normal-state resistivities of order 10 m$Omega$~cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb$_{0.5}$Sn$_{0.5}$)$_{0.7}$In$_{0.3}$Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theory.
Indium substitution turns the topological crystalline insulator (TCI) Pb$_{0.5}$Sn$_{0.5}$Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_{x}$Te, we have grown high-quality single crystals using a modified floating-zone method, and have performed systematic studies for indium content in the range $0leq xleq 0.35$. We find that the single crystals retain the rock salt structure up to the solubility limit of indium ($xsim0.30$). Experimental dependences of the superconducting transition temperature ($T_c$) and the upper critical magnetic field ($H_{c2}$) on the indium content $x$ have been measured. The maximum $T_c$ is determined to be 4.7 K at $x=0.30$, with $mu_0H_{c2}(T=0)approx 5$ T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا