ﻻ يوجد ملخص باللغة العربية
Given a single RGB panorama, the goal of 3D layout reconstruction is to estimate the room layout by predicting the corners, floor boundary, and ceiling boundary. A common approach has been to use standard convolutional networks to predict the corners and boundaries, followed by post-processing to generate the 3D layout. However, the space-varying distortions in panoramic images are not compatible with the translational equivariance property of standard convolutions, thus degrading performance. Instead, we propose to use spherical convolutions. The resulting network, which we call OmniLayout performs convolutions directly on the sphere surface, sampling according to inverse equirectangular projection and hence invariant to equirectangular distortions. Using a new evaluation metric, we show that our network reduces the error in the heavily distorted regions (near the poles) by approx 25 % when compared to standard convolutional networks. Experimental results show that OmniLayout outperforms the state-of-the-art by approx 4% on two different benchmark datasets (PanoContext and Stanford 2D-3D). Code is available at https://github.com/rshivansh/OmniLayout.
Existing view synthesis methods mainly focus on the perspective images and have shown promising results. However, due to the limited field-of-view of the pinhole camera, the performance quickly degrades when large camera movements are adopted. In thi
Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a p
We propose an algorithm to predict room layout from a single image that generalizes across panoramas and perspective images, cuboid layouts and more general layouts (e.g. L-shape room). Our method operates directly on the panoramic image, rather than
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets. In the proposed system, a movable platform collects both intensity images and 2D LiDAR informati
Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image. Most previous work relies on the cuboid-shape prior. This paper considers a more general indoor assumption, i.e., the room layout con