ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation and relaxation of viscous thin films under bouncing drops

141   0   0.0 ( 0 )
 نشر من قبل Srinath Lakshman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin, viscous liquid films subjected to impact events can deform. Here we investigate free surface oil film deformations that arise due to the air pressure buildup under the impacting and rebouncing water drops. Using Digital Holographic Microscopy, we measure the 3D surface topography of the deformed film immediately after the drop rebound, with a resolution down to 20 nm. We first discuss how the film is initially deformed during impact, as a function of film thickness, film viscosity, and drop impact speed. Subsequently, we describe the slow relaxation process of the deformed film after the rebound. Scaling laws for the broadening of the width and the decay of the amplitude of the perturbations are obtained experimentally and found to be in excellent agreement with the results from a lubrication analysis. We finally arrive at a detailed spatio-temporal description of the oil film deformations that arise during the impact and rebouncing of water drops.



قيم البحث

اقرأ أيضاً

We present systematic wetting experiments and numerical simulations of gravity driven liquid drops sliding on a plane substrate decorated with a linear chemical step. Surprisingly, the optimal direction to observe crossing is not the one perpendicula r to the step, but a finite angle that depends on the material parameters. We computed the landscapes of the force acting on the drop by means of a contact line mobility model showing that contact angle hysteresis dominates the dynamics at the step and determines whether the drop passes onto the lower substrate. This analysis is very well supported by the experimental dynamic phase diagram in terms of pinning, crossing, sliding and sliding followed by pinning.
The off-center collision of binary bouncing droplets of equal size was studied numerically by a volume-of-fluid (VOF) method with two marker functions, which has been validated by comparing with available experimental results. A non-monotonic kinetic energy recovery with varying impact parameters was found based on the energy budget analysis. This can be explained by the prolonged entanglement time and the enhanced internal-flow-induced viscous dissipation for bouncing droplets at intermediate impact parameters, compared with those at smaller or larger impact parameters. The universality of this non-monotonicity was numerically verified, and thereby an approximate fitting formula was proposed to correlate the kinetic energy dissipation factor with the impact parameter for various Weber numbers and Ohnesorge numbers. From the vortex dynamics perspective, a helicity analysis of droplet internal flow identifies a strong three-dimensional interaction between the ring-shaped vortices and the line-shaped shear layers for off-center collisions. Furthermore, we demonstrated theoretically and verified numerically that the equivalence between the total enstrophy and the total viscous dissipation, which holds for a single-phase flow system confined by stationary boundaries, is not generally satisfied for the two-phase flow system containing gas-liquid interfaces. This is attributed to the work done by the unbalanced viscous stresses, which results from the interfacial flow and the vorticity associated with the movement of the oscillating interface.
We examine experimentally the deformation of flexible, microscale helical ribbons with nanoscale thickness subject to viscous flow in a microfluidic channel. Two aspects of flexible microhelices are quantified: the overall shape of the helix and the viscous frictional properties. The frictional coefficients determined by our experiments are consistent with calculated values in the context of resistive force theory. Deformation of helices by viscous flow is well-described by non-linear finite extensibility. Under distributed loading, the pitch distribution is non-uniform and from this, we identify both linear and non-linear behavior along the contour length of a single helix. Moreover, flexible helices are found to display reversible global to local helical transitions at high flow rate.
We study the deformation and breakup of an axisymmetric electrolyte drop which is freely suspended in an infinite dielectric medium and subjected to an imposed electric field. The electric potential in the drop phase is assumed small, so that its gov erning equation is approximated by a linearized Poisson-Boltzmann or modified Helmholtz equation (the Debye-H{u}ckel regime). An accurate and efficient boundary integral method is developed to solve the low-Reynolds-number flow problem for the time-dependent drop deformation, in the case of arbitrary Debye layer thickness. Extensive numerical results are presented for the case when the viscosity of the drop and surrounding medium are comparable. Qualitative similarities are found between the evolution of a drop with a thick Debye layer (characterized by the parameter $chill 1$, which is an inverse dimensionless Debye layer thickness) and a perfect dielectric drop in an insulating medium. In this limit, a highly elongated steady state is obtained for sufficiently large imposed electric field, and the field inside the drop is found to be well approximated using slender body theory. In the opposite limit $chigg 1$, when the Debye layer is thin, the drop behaves as a highly conducting drop, even for moderate permittivity ratio $Q=epsilon_1/epsilon_2$, where $epsilon_1, epsilon_2$ is the dielectric permittivity of drop interior and exterior, respectively. For parameter values at which steady solutions no longer exist, we find three distinct types of unsteady solution or breakup modes. These are termed conical end formation, end splashing, and open end stretching. The second breakup mode, end splashing, resembles the breakup solution presented in a recent paper [R. B. Karyappa et al., J. Fluid Mech. 754, 550-589 (2014)]. We compute a phase diagram which illustrates the regions in parameter space in which the different breakup modes occur.
112 - H.M. Lopez 2015
We study the deformation and transport of elastic fibers in a viscous Hele-Shaw flow with curved streamlines. The variations of the global velocity and orientation of the fiber follow closely those of the local flow velocity. The ratios of the curvat ures of the fibers by the corresponding curvatures of the streamlines reflect a balance between elastic and viscous forces: this ratio is shown experimentally to be determined by a dimensionless {it Sperm number} $Sp$ combining the characteristic parameters of the flow (transverse velocity gradient, viscosity, fiber diameter/cell gap ratio) and those of the fiber (diameter, effective length, Youngs modulus). For short fibers, the effective length is that of the fiber; for long ones, it is equal to the transverse characteristic length of the flow. For $S_p lesssim 250$, the ratio of the curvatures increases linearly with $Sp$; For $S_p gtrsim 250$, the fiber reaches the same curvature as the streamlines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا