ﻻ يوجد ملخص باللغة العربية
We propose an extension of the Standard Model (SM) for radiative neutrino mass by introducing a dark $U(1)_D$ gauge symmetry. The kinetic mixing between the SM gauges and the dark $U(1)_D$ gauge arises at 1-loop mediated by new inert scalar fields. We show that the tiny neutrino mass and dark matter candidates are naturally accommodated. Motivated by the recent measurement of $(g-2)_{mu}$ indicating $4.2~ sigma$ deviation from the SM prediction, we examine how the deviation $Delta a_{mu}$ can be explained in this model.
We explore muon anomalous magnetic moment (muon $g-2$) in a scotogenic neutrino model with a gauged lepton numbers symmetry $U(1)_{mu-tau}$. In this model, a dominant muon $g-2$ contribution comes from not an additional gauge sector but the Yukawa se
Gauged $U(1)_{L_mu - L_tau}$ model has been advocated for a long time in light of muon $g-2$ anomaly, which is a more than $3sigma$ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three r
The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via f
We propose a novel mechanism to realize leptogenesis through the Breit-Wigner resonance of a dark $U(1)_D$ gauge boson $Z_D$, which mediates lepton number violating annihilations of dark matter (DM) in the context of the scotogenic model with a $U(1)
We discuss the viability of the $mu$--$tau$ interchange symmetry imposed on the neutrino mass matrix in the flavor space. Whereas the exact symmetry is shown to lead to textures of completely degenerate spectrum which is incompatible with the neutrin