ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyclic projections in Hadamard spaces

159   0   0.0 ( 0 )
 نشر من قبل Anton Petrunin
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that iterating projections onto convex subsets of Hadamard spaces can behave in a more complicated way than in Hilbert spaces, resolving a problem formulated by Miroslav Bav{c}ak.



قيم البحث

اقرأ أيضاً

With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces and specially fractals, this paper makes a step further in the development of a theory of heat semigroup based $(1,p)$ Sobolev spaces in the general framework of Dirichlet spaces. Under suitable assumptions that are verified in a variety of settings, the tools developed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper Sobolev inequalities in disguise allow us to obtain the whole family of Gagliardo-Nirenberg and Trudinger-Moser inequalities with optimal exponents. The latter depend not only on the Hausdorff and walk dimensions of the space but also on other invariants. In addition, we prove Morrey type inequalities and apply them to study the infimum of the exponents that ensure continuity of Sobolev functions. The results are illustrated for fractals using the Vicsek set, whereas several conjectures are made for nested fractals and the Sierpinski carpet.
We study quasi-isometry invariants of Gromov hyperbolic spaces, focussing on the l_p-cohomology and closely related invariants such as the conformal dimension, combinatorial modulus, and the Combinatorial Loewner Property. We give new constructions o f continuous l_p-cohomology, thereby obtaining information about the l_p-equivalence relation, as well as critical exponents associated with l_p-cohomology. As an application, we provide a flexible construction of hyperbolic groups which do not have the Combinatorial Loewner Property, extending and complementing earlier examples. Another consequence is the existence of hyperbolic groups with Sierpinski carpet boundary which have conformal dimension arbitrarily close to 1. In particular, we answer questions of Mario Bonk and John Mackay.
Let $G $ be a noncompact semisimple Lie group with finite centre. Let $X=G/K$ be the associated Riemannian symmetric space and assume that $X$ is of rank one. The spectral projections associated to the Laplace-Beltrami operator are given by $P_{lambd a}f =fast Phi_{lambda}$, where $Phi_{lambda}$ are the elementary spherical functions on $X$. In this paper, we prove an Ingham type uncertainty principle for $P_{lambda}f$. Moreover, similar results are obtained in the case of spectral projections associated to Dunkl Laplacian.
Let $h^infty_v$ be the class of harmonic functions in the unit disk which admit a two-sided radial majorant $v(r)$. We consider functions $v $ that fulfill a doubling condition. We characterize functions in $h^infty_v$ that are represented by Hadamar d gap series in terms of their coefficients, and as a corollary we obtain a characterization of Hadamard gap series in Bloch-type spaces for weights with a doubling property. We show that if $uin h^infty_v$ is represented by a Hadamard gap series, then $u $ will grow slower than $v$ or oscillate along almost all radii. We use the law of the iterated logarithm for trigonometric series to find an upper bound on the growth of a weighted average of the function $u $, and we show that the estimate is sharp.
We show that an idea, originating initially with a fundamental recursive iteration scheme (usually referred as the Kaczmarz algorithm), admits important applications in such infinite-dimensional, and non-commutative, settings as are central to spectr al theory of operators in Hilbert space, to optimization, to large sparse systems, to iterated function systems (IFS), and to fractal harmonic analysis. We present a new recursive iteration scheme involving as input a prescribed sequence of selfadjoint projections. Applications include random Kaczmarz recursions, their limits, and their error-estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا