ﻻ يوجد ملخص باللغة العربية
Traditional computer vision models are trained to predict a fixed set of predefined categories. Recently, natural language has been shown to be a broader and richer source of supervision that provides finer descriptions to visual concepts than supervised gold labels. Previous works, such as CLIP, use a simple pretraining task of predicting the pairings between images and text captions. CLIP, however, is data hungry and requires more than 400M image text pairs for training. We propose a data-efficient contrastive distillation method that uses soft labels to learn from noisy image-text pairs. Our model transfers knowledge from pretrained image and sentence encoders and achieves strong performance with only 3M image text pairs, 133x smaller than CLIP. Our method exceeds the previous SoTA of general zero-shot learning on ImageNet 21k+1k by 73% relatively with a ResNet50 image encoder and DeCLUTR text encoder. We also beat CLIP by 10.5% relatively on zero-shot evaluation on Google Open Images (19,958 classes).
Visual cognition of primates is superior to that of artificial neural networks in its ability to envision a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to e
Zero-shot image classification has made promising progress by training the aligned image and text encoders. The goal of this work is to advance zero-shot object detection, which aims to detect novel objects without bounding box nor mask annotations.
Knowledge Distillation (KD) has been used in image classification for model compression. However, rare studies apply this technology on single-stage object detectors. Focal loss shows that the accumulated errors of easily-classified samples dominate
Deep learning (DL) has emerged as a powerful tool for accelerated MRI reconstruction, but these methods often necessitate a database of fully-sampled measurements for training. Recent self-supervised and unsupervised learning approaches enable traini
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on