ترغب بنشر مسار تعليمي؟ اضغط هنا

Ranking Structured Objects with Graph Neural Networks

83   0   0.0 ( 0 )
 نشر من قبل Clemens Damke
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph neural networks (GNNs) have been successfully applied in many structured data domains, with applications ranging from molecular property prediction to the analysis of social networks. Motivated by the broad applicability of GNNs, we propose the family of so-called RankGNNs, a combination of neural Learning to Rank (LtR) methods and GNNs. RankGNNs are trained with a set of pair-wise preferences between graphs, suggesting that one of them is preferred over the other. One practical application of this problem is drug screening, where an expert wants to find the most promising molecules in a large collection of drug candidates. We empirically demonstrate that our proposed pair-wise RankGNN approach either significantly outperforms or at least matches the ranking performance of the naive point-wise baseline approach, in which the LtR problem is solved via GNN-based graph regression.



قيم البحث

اقرأ أيضاً

Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs. In this paper, we study unsupervised training of GNN pooling in terms of their clustering capabilities. We start by drawing a connection between graph clustering and graph pooling: intuitively, a good graph clustering is what one would expect from a GNN pooling layer. Counterintuitively, we show that this is not true for state-of-the-art pooling methods, such as MinCut pooling. To address these deficiencies, we introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality, and show how it tackles recovery of the challenging clustering structure of real-world graphs. In order to clarify the regimes where existing methods fail, we carefully design a set of experiments on synthetic data which show that DMoN is able to jointly leverage the signal from the graph structure and node attributes. Similarly, on real-world data, we show that DMoN produces high quality clusters which correlate strongly with ground truth labels, achieving state-of-the-art results.
As large-scale graphs become increasingly more prevalent, it poses significant computational challenges to process, extract and analyze large graph data. Graph coarsening is one popular technique to reduce the size of a graph while maintaining essent ial properties. Despite rich graph coarsening literature, there is only limited exploration of data-driven methods in the field. In this work, we leverage the recent progress of deep learning on graphs for graph coarsening. We first propose a framework for measuring the quality of coarsening algorithm and show that depending on the goal, we need to carefully choose the Laplace operator on the coarse graph and associated projection/lift operators. Motivated by the observation that the current choice of edge weight for the coarse graph may be sub-optimal, we parametrize the weight assignment map with graph neural networks and train it to improve the coarsening quality in an unsupervised way. Through extensive experiments on both synthetic and real networks, we demonstrate that our method significantly improves common graph coarsening methods under various metrics, reduction ratios, graph sizes, and graph types. It generalizes to graphs of larger size ($25times$ of training graphs), is adaptive to different losses (differentiable and non-differentiable), and scales to much larger graphs than previous work.
81 - Hao Liu , Haoli Bai , Lirong He 2017
Unsupervised structure learning in high-dimensional time series data has attracted a lot of research interests. For example, segmenting and labelling high dimensional time series can be helpful in behavior understanding and medical diagnosis. Recent advances in generative sequential modeling have suggested to combine recurrent neural networks with state space models (e.g., Hidden Markov Models). This combination can model not only the long term dependency in sequential data, but also the uncertainty included in the hidden states. Inheriting these advantages of stochastic neural sequential models, we propose a structured and stochastic sequential neural network, which models both the long-term dependencies via recurrent neural networks and the uncertainty in the segmentation and labels via discrete random variables. For accurate and efficient inference, we present a bi-directional inference network by reparamterizing the categorical segmentation and labels with the recent proposed Gumbel-Softmax approximation and resort to the Stochastic Gradient Variational Bayes. We evaluate the proposed model in a number of tasks, including speech modeling, automatic segmentation and labeling in behavior understanding, and sequential multi-objects recognition. Experimental results have demonstrated that our proposed model can achieve significant improvement over the state-of-the-art methods.
In recent years, graph neural networks (GNNs) have gained increasing attention, as they possess the excellent capability of processing graph-related problems. In practice, hyperparameter optimisation (HPO) is critical for GNNs to achieve satisfactory results, but this process is costly because the evaluations of different hyperparameter settings require excessively training many GNNs. Many approaches have been proposed for HPO, which aims to identify promising hyperparameters efficiently. In particular, the genetic algorithm (GA) for HPO has been explored, which treats GNNs as a black-box model, of which only the outputs can be observed given a set of hyperparameters. However, because GNN models are sophisticated and the evaluations of hyperparameters on GNNs are expensive, GA requires advanced techniques to balance the exploration and exploitation of the search and make the optimisation more effective given limited computational resources. Therefore, we proposed a tree-structured mutation strategy for GA to alleviate this issue. Meanwhile, we reviewed the recent HPO works, which gives room for the idea of tree-structure to develop, and we hope our approach can further improve these HPO methods in the future.
Dynamical systems consisting of a set of autonomous agents face the challenge of having to accomplish a global task, relying only on local information. While centralized controllers are readily available, they face limitations in terms of scalability and implementation, as they do not respect the distributed information structure imposed by the network system of agents. Given the difficulties in finding optimal decentralized controllers, we propose a novel framework using graph neural networks (GNNs) to emph{learn} these controllers. GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties. The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا