ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-rank Subspaces for Unsupervised Entity Linking

93   0   0.0 ( 0 )
 نشر من قبل Akhil Arora
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity linking is an important problem with many applications. Most previous solutions were designed for settings where annotated training data is available, which is, however, not the case in numerous domains. We propose a light-weight and scalable entity linking method, Eigenthemes, that relies solely on the availability of entity names and a referent knowledge base. Eigenthemes exploits the fact that the entities that are truly mentioned in a document (the gold entities) tend to form a semantically dense subset of the set of all candidate entities in the document. Geometrically speaking, when representing entities as vectors via some given embedding, the gold entities tend to lie in a low-rank subspace of the full embedding space. Eigenthemes identifies this subspace using the singular value decomposition and scores candidate entities according to their proximity to the subspace. On the empirical front, we introduce multiple strong baselines that compare favorably to the existing state of the art. Extensive experiments on benchmark datasets from a variety of real-world domains showcase the effectiveness of our approach.



قيم البحث

اقرأ أيضاً

We propose a new formulation for multilingual entity linking, where language-specific mentions resolve to a language-agnostic Knowledge Base. We train a dual encoder in this new setting, building on prior work with improved feature representation, ne gative mining, and an auxiliary entity-pairing task, to obtain a single entity retrieval model that covers 100+ languages and 20 million entities. The model outperforms state-of-the-art results from a far more limited cross-lingual linking task. Rare entities and low-resource languages pose challenges at this large-scale, so we advocate for an increased focus on zero- and few-shot evaluation. To this end, we provide Mewsli-9, a large new multilingual dataset (http://goo.gle/mewsli-dataset) matched to our setting, and show how frequency-based analysis provided key insights for our model and training enhancements.
Machine understanding of user utterances in conversational systems is of utmost importance for enabling engaging and meaningful conversations with users. Entity Linking (EL) is one of the means of text understanding, with proven efficacy for various downstream tasks in information retrieval. In this paper, we study entity linking for conversational systems. To develop a better understanding of what EL in a conversational setting entails, we analyze a large number of dialogues from existing conversational datasets and annotate references to concepts, named entities, and personal entities using crowdsourcing. Based on the annotated dialogues, we identify the main characteristics of conversational entity linking. Further, we report on the performance of traditional EL systems on our Conversational Entity Linking dataset, ConEL, and present an extension to these methods to better fit the conversational setting. The resources released with this paper include annotated datasets, detailed descriptions of crowdsourcing setups, as well as the annotations produced by various EL systems. These new resources allow for an investigation of how the role of entities in conversations is different from that in documents or isolated short text utterances like queries and tweets, and complement existing conversational datasets.
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of entities, as neural models tend to overfit by memorizing properties of frequent entities in a dataset. We tackle the problem of building robust entity linking models that generalize effectively and do not rely on labeled entity linking data with a specific entity distribution. Rather than predicting entities directly, our approach models fine-grained entity properties, which can help disambiguate between even closely related entities. We derive a large inventory of types (tens of thousands) from Wikipedia categories, and use hyperlinked mentions in Wikipedia to distantly label data and train an entity typing model. At test time, we classify a mention with this typing model and use soft type predictions to link the mention to the most similar candidate entity. We evaluate our entity linking system on the CoNLL-YAGO dataset (Hoffart et al., 2011) and show that our approach outperforms prior domain-independent entity linking systems. We also test our approach in a harder setting derived from the WikilinksNED dataset (Eshel et al., 2017) where all the mention-entity pairs are unseen during test time. Results indicate that our approach generalizes better than a state-of-the-art neural model on the dataset.
Biomedical question-answering (QA) has gained increased attention for its capability to provide users with high-quality information from a vast scientific literature. Although an increasing number of biomedical QA datasets has been recently made avai lable, those resources are still rather limited and expensive to produce. Transfer learning via pre-trained language models (LMs) has been shown as a promising approach to leverage existing general-purpose knowledge. However, finetuning these large models can be costly and time consuming, often yielding limited benefits when adapting to specific themes of specialised domains, such as the COVID-19 literature. To bootstrap further their domain adaptation, we propose a simple yet unexplored approach, which we call biomedical entity-aware masking (BEM). We encourage masked language models to learn entity-centric knowledge based on the pivotal entities characterizing the domain at hand, and employ those entities to drive the LM fine-tuning. The resulting strategy is a downstream process applicable to a wide variety of masked LMs, not requiring additional memory or components in the neural architectures. Experimental results show performance on par with state-of-the-art models on several biomedical QA datasets.
Entity alignment, aiming to identify equivalent entities across different knowledge graphs (KGs), is a fundamental problem for constructing large-scale KGs. Over the course of its development, supervision has been considered necessary for accurate al ignments. Inspired by the recent progress of self-supervised learning, we explore the extent to which we can get rid of supervision for entity alignment. Existing supervised methods for this task focus on pulling each pair of positive (labeled) entities close to each other. However, our analysis suggests that the learning of entity alignment can actually benefit more from pushing sampled (unlabeled) negatives far away than pulling positive aligned pairs close. We present SelfKG by leveraging this discovery to design a contrastive learning strategy across two KGs. Extensive experiments on benchmark datasets demonstrate that SelfKG without supervision can match or achieve comparable results with state-of-the-art supervised baselines. The performance of SelfKG demonstrates self-supervised learning offers great potential for entity alignment in KGs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا