ﻻ يوجد ملخص باللغة العربية
Here, we demonstrate two reliable routes for the fabrication of armchair-edge graphene nanoribbons (GNRs) on TbAu2/Au(111), belonging to a class of two-dimensional ferromagnetic rare earth-gold intermetallic compounds. On-surface synthesis directly on TbAu2 leads to the formation of GNRs, which are short and interconnected with each other. In contrast, the intercalation approach - on-surface synthesis of GNRs directly on Au(111) followed by rare earth intercalation - yields GNRs on TbAu2/Au(111), where both the ribbons and TbAu2 are of high quality comparable with those directly grown on clean Au(111). Besides, the as-grown ribbons retain the same band gap while changing from p-doping to weak n-doping mainly due to a change in the work function of the substrate after the rare earth intercalation. The intercalation approach might also be employed to fabricate other types of GNRs on various rare earth intermetallic compounds, providing platforms to tailor the electronic and magnetic properties of GNRs on magnetic substrates.
Surface alloying is a straightforward route to control and modify the structure and electronic properties of surfaces. Here, We present a systematical study on the structural and electronic properties of three novel rare earth-based intermetallic com
Graphene-based nanostructures exhibit a vast range of exciting electronic properties that are absent in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons (AGNRs) leads to the opening of substant
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very rec
Chiral graphene nanoribbons are extremely interesting structures due to their low bandgaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces and assess the effect of charge transfer on their properties.
Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials beyond graphene and novel topological phases of matter. While surface oxidation in ambient conditi