ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconsidering CO2 emissions from Computer Vision

68   0   0.0 ( 0 )
 نشر من قبل Mahdi S. Hosseini Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Climate change is a pressing issue that is currently affecting and will affect every part of our lives. Its becoming incredibly vital we, as a society, address the climate crisis as a universal effort, including those in the Computer Vision (CV) community. In this work, we analyze the total cost of CO2 emissions by breaking it into (1) the architecture creation cost and (2) the life-time evaluation cost. We show that over time, these costs are non-negligible and are having a direct impact on our future. Importantly, we conduct an ethical analysis of how the CV-community is unintentionally overlooking its own ethical AI principles by emitting this level of CO2. To address these concerns, we propose adding enforcement as a pillar of ethical AI and provide some recommendations for how architecture designers and broader CV community can curb the climate crisis.



قيم البحث

اقرأ أيضاً

The digital Michelangelo project was a seminal computer vision project in the early 2000s that pushed the capabilities of acquisition systems and involved multiple people from diverse fields, many of whom are now leaders in industry and academia. Rev iewing this project with modern eyes provides us with the opportunity to reflect on several issues, relevant now as then to the field of computer vision and research in general, that go beyond the technical aspects of the work. This article was written in the context of a reading group competition at the week-long International Computer Vision Summer School 2017 (ICVSS) on Sicily, Italy. To deepen the participants understanding of computer vision and to foster a sense of community, various reading groups were tasked to highlight important lessons which may be learned from provided literature, going beyond the contents of the paper. This report is the winning entry of this guided discourse (Fig. 1). The authors closely examined the origins, fruits and most importantly lessons about research in general which may be distilled from the digital Michelangelo project. Discussions leading to this report were held within the group as well as with Hao Li, the group mentor.
133 - Laurent Perrinet 2017
The representation of images in the brain is known to be sparse. That is, as neural activity is recorded in a visual area ---for instance the primary visual cortex of primates--- only a few neurons are active at a given time with respect to the whole population. It is believed that such a property reflects the efficient match of the representation with the statistics of natural scenes. Applying such a paradigm to computer vision therefore seems a promising approach towards more biomimetic algorithms. Herein, we will describe a biologically-inspired approach to this problem. First, we will describe an unsupervised learning paradigm which is particularly adapted to the efficient coding of image patches. Then, we will outline a complete multi-scale framework ---SparseLets--- implementing a biologically inspired sparse representation of natural images. Finally, we will propose novel methods for integrating prior information into these algorithms and provide some preliminary experimental results. We will conclude by giving some perspective on applying such algorithms to computer vision. More specifically, we will propose that bio-inspired approaches may be applied to computer vision using predictive coding schemes, sparse models being one simple and efficient instance of such schemes.
Fashion is the way we present ourselves to the world and has become one of the worlds largest industries. Fashion, mainly conveyed by vision, has thus attracted much attention from computer vision researchers in recent years. Given the rapid developm ent, this paper provides a comprehensive survey of more than 200 major fashion-related works covering four main aspects for enabling intelligent fashion: (1) Fashion detection includes landmark detection, fashion parsing, and item retrieval, (2) Fashion analysis contains attribute recognition, style learning, and popularity prediction, (3) Fashion synthesis involves style transfer, pose transformation, and physical simulation, and (4) Fashion recommendation comprises fashion compatibility, outfit matching, and hairstyle suggestion. For each task, the benchmark datasets and the evaluation protocols are summarized. Furthermore, we highlight promising directions for future research.
This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a seman tic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection.
Computer vision has achieved impressive progress in recent years. Meanwhile, mobile phones have become the primary computing platforms for millions of people. In addition to mobile phones, many autonomous systems rely on visual data for making decisi ons and some of these systems have limited energy (such as unmanned aerial vehicles also called drones and mobile robots). These systems rely on batteries and energy efficiency is critical. This article serves two main purposes: (1) Examine the state-of-the-art for low-power solutions to detect objects in images. Since 2015, the IEEE Annual International Low-Power Image Recognition Challenge (LPIRC) has been held to identify the most energy-efficient computer vision solutions. This article summarizes 2018 winners solutions. (2) Suggest directions for research as well as opportunities for low-power computer vision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا