ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution

142   0   0.0 ( 0 )
 نشر من قبل Benjamin Lynch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations and modeling of the magnetic field configuration, morphology, and dynamics of a large-scale, high-latitude filament eruption observed by the Solar Dynamics Observatory. We analyze the 2015 July 9-10 filament eruption and the evolution of the resulting coronal mass ejection (CME) through the solar corona. The slow streamer-blowout CME leaves behind an elongated post-eruption arcade above the extended polarity inversion line that is only poorly visible in extreme ultraviolet (EUV) disk observations and does not resemble a typical bright flare-loop system. Magnetohydrodynamic (MHD) simulation results from our data-inspired modeling of this eruption compare favorably with the EUV and white-light coronagraph observations. We estimate the reconnection flux from the simulations flare-arcade growth and examine the magnetic-field orientation and evolution of the erupting prominence, highlighting the transition from an erupting sheared-arcade filament channel into a streamer-blowout flux-rope CME. Our results represent the first numerical modeling of a global-scale filament eruption where multiple ambiguous and complex observational signatures in EUV and white light can be fully understood and explained with the MHD simulation. In this context, our findings also suggest that the so-called stealth CME classification, as a driver of unexpected or problem geomagnetic storms, belongs more to a continuum of observable/non-observable signatures than to separate or distinct eruption processes.



قيم البحث

اقرأ أيضاً

During its first solar encounter, the Parker Solar Probe (PSP) acquired unprecedented up-close imaging of a small Coronal Mass Ejection (CME) propagating in the forming slow solar wind. The CME originated as a cavity imaged in extreme ultraviolet tha t moved very slowly ($<50$ km/s) to the 3-5 solar radii (R$_odot$) where it then accelerated to supersonic speeds. We present a new model of an erupting Flux Rope (FR) that computes the forces acting on its expansion with a computation of its internal magnetic field in three dimensions. The latter is accomplished by solving the Grad-Shafranov equation inside two-dimensional cross sections of the FR. We use this model to interpret the kinematic evolution and morphology of the CME imaged by PSP. We investigate the relative role of toroidal forces, momentum coupling, and buoyancy for different assumptions on the initial properties of the CME. The best agreement between the dynamic evolution of the observed and simulated FR is obtained by modeling the two-phase eruption process as the result of two episodes of poloidal flux injection. Each episode, possibly induced by magnetic reconnection, boosted the toroidal forces accelerating the FR out of the corona. We also find that the drag induced by the accelerating solar wind could account for about half of the acceleration experienced by the FR. We use the model to interpret the presence of a small dark cavity, clearly imaged by PSP deep inside the CME, as a low-density region dominated by its strong axial magnetic fields.
In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this paper, we perform numerical simulations of CMEs interacting with different solar wind streams using the linear force-free spheromak CME model incorporated into the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) model. The novelty of our approach lies in the investigation of the evolution of CME complexity using a swarm of radially aligned, simulated spacecraft. Our scope is to determine under which conditions, and to what extent, CMEs exhibit variations of their magnetic structure and complexity during propagation, as measured by spacecraft that are radially aligned. Results indicate that the interaction with large-scale solar wind structures, and particularly with stream interaction regions, doubles the probability to detect an increase of the CME magnetic complexity between two spacecraft in radial alignment, compared to cases without such interactions. This work represents the first attempt to quantify the probability of detecting complexity changes in CME magnetic structures by spacecraft in radial alignment using numerical simulations, and it provides support to the interpretation of multi-point CME observations involving past, current (such as Parker Solar Probe and Solar Orbiter), and future missions.
Coronal Mass Ejections (CMEs) are one of the primary drivers of extreme space weather. They are large eruptions of mass and magnetic field from the solar corona and can travel the distance between Sun and Earth in half a day to a few days. Prediction s of CMEs at 1 Astronomical Unit (AU), in terms of both its arrival time and magnetic field configuration, are very important for predicting space weather. Magnetohydrodynamic (MHD) modeling of CMEs, using flux-rope-based models is a promising tool for achieving this goal. In this study, we present one such model for CME simulations, based on spheromak magnetic field configuration. We have modified the spheromak solution to allow for independent input of poloidal and toroidal fluxes. The motivation for this is a possibility to estimate these fluxes from solar magnetograms and extreme ultraviolet (EUV) data from a number of different approaches. We estimate the poloidal flux of CME using post eruption arcades (PEAs) and toroidal flux from the coronal dimming. In this modified spheromak, we also have an option to control the helicity sign of flux ropes, which can be derived from the solar disk magnetograms using the magnetic tongue approach. We demonstate the applicability of this model by simulating the 12 July 2012 CME in the solar corona.
Fast interplanetary coronal mass ejections (interplanetary CMEs, or ICMEs) are the drivers of strongest space weather storms such as solar energetic particle events and geomagnetic storms. The connection between space weather impacting solar wind dis turbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speed during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose the sheath-accumulating propagation (SAP) model that describe the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discussed (1) ICME deceleration characteristics, (2) the fundamental condition for fast ICME at Earth, (3) thickness of interplanetary sheath, (4) arrival time prediction and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only speed but also mass of the CME are crucial in discussing the above five points. The similarities and differences among the SAP model, the drag-based model and the`snow-plough model proposed by citet{tappin2006} are also discussed.
575 - T. Rollett , C. Moestl , M. Temmer 2014
We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CMEs propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا