Scalar quasinormal modes for 2+1-dimensional Coulomb like AdS black holes from non lineal electrodynamics


الملخص بالإنكليزية

We study the propagation of scalar fields in the background of $2+1$-dimensional Coulomb like AdS black holes, and we show that such propagation is stable under Dirichlet boundary conditions. Then, we solve the Klein-Gordon equation by using the pseudospectral Chevyshev method, and we find the quasinormal frequencies. Mainly, we find that the quasinormal frequencies are purely imaginary for a null angular number and they are complex and purely imaginary for a non null value of the angular number, which depend on the black hole charge, angular number and overtone number. On the other hand, the effect of the inclusion of a Coulomb like field from non lineal electrodynamics to General Relativity for a vanishing angular number is the emergence of two branches of quasinormal frequencies in contrast with the static BTZ black hole.

تحميل البحث