ﻻ يوجد ملخص باللغة العربية
Because of the superior feature representation ability of deep learning, various deep Click-Through Rate (CTR) models are deployed in the commercial systems by industrial companies. To achieve better performance, it is necessary to train the deep CTR models on huge volume of training data efficiently, which makes speeding up the training process an essential problem. Different from the models with dense training data, the training data for CTR models is usually high-dimensional and sparse. To transform the high-dimensional sparse input into low-dimensional dense real-value vectors, almost all deep CTR models adopt the embedding layer, which easily reaches hundreds of GB or even TB. Since a single GPU cannot afford to accommodate all the embedding parameters, when performing distributed training, it is not reasonable to conduct the data-parallelism only. Therefore, existing distributed training platforms for recommendation adopt model-parallelism. Specifically, they use CPU (Host) memory of servers to maintain and update the embedding parameters and utilize GPU worker to conduct forward and backward computations. Unfortunately, these platforms suffer from two bottlenecks: (1) the latency of pull & push operations between Host and GPU; (2) parameters update and synchronization in the CPU servers. To address such bottlenecks, in this paper, we propose the ScaleFreeCTR: a MixCache-based distributed training system for CTR models. Specifically, in SFCTR, we also store huge embedding table in CPU but utilize GPU instead of CPU to conduct embedding synchronization efficiently. To reduce the latency of data transfer between both GPU-Host and GPU-GPU, the MixCache mechanism and Virtual Sparse Id operation are proposed. Comprehensive experiments and ablation studies are conducted to demonstrate the effectiveness and efficiency of SFCTR.
Tables are widely used with various structures to organize and present data. Recent attempts on table understanding mainly focus on relational tables, yet overlook to other common table structures. In this paper, we propose TUTA, a unified pre-traini
Click-Through Rate (CTR) prediction is critical for industrial recommender systems, where most deep CTR models follow an Embedding & Feature Interaction paradigm. However, the majority of methods focus on designing network architectures to better cap
Answering natural language questions over tables is usually seen as a semantic parsing task. To alleviate the collection cost of full logical forms, one popular approach focuses on weak supervision consisting of denotations instead of logical forms.
CTR prediction, which aims to estimate the probability that a user will click an item, plays a crucial role in online advertising and recommender system. Feature interaction modeling based and user interest mining based methods are the two kinds of m
The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some work has explored training on l