ﻻ يوجد ملخص باللغة العربية
We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in the whole space, and study the asymptotic profile and optimal decay rates of solutions as time goes to infinity in L^{2}-sense. The operator L considered in this paper was first introduced to dissipate the solutions of the wave equation in the paper studied by Charao-Ikehata in 2020. We will discuss the asymptotic property of the solution as time goes to infinity to our Cauchy problem, and in particular, we classify the property of the solutions into three parts from the viewpoint of regularity of the initial data, that is, diffusion-like, wave-like, and both of them.
We introduce a new model of the logarithmic type of wave-like equation with a nonlocal logarithmic damping mechanism, which is rather weakly effective as compared with frequently studied fractional damping cases. We consider the Cauchy problem for th
We consider the large time behavior in two types of equations, posed on the whole space R^d: the Schr{o}dinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on
Let $u$ be the solution of $u_t=Deltalog u$ in $R^Ntimes (0,T)$, N=3 or $Nge 5$, with initial value $u_0$ satisfying $B_{k_1}(x,0)le u_0le B_{k_2}(x,0)$ for some constants $k_1>k_2>0$ where $B_k(x,t) =2(N-2)(T-t)_+^{N/(N-2)}/(k+(T-t)_+^{2/(N-2)}|x|^2
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy
We consider the Schrodinger equation with nonlinear dissipation begin{equation*} i partial _t u +Delta u=lambda|u|^{alpha}u end{equation*} in ${mathbb R}^N $, $Ngeq1$, where $lambdain {mathbb C} $ with $Imlambda<0$. Assuming $frac {2} {N+2}<alpha<fra