ﻻ يوجد ملخص باللغة العربية
Most adversarial attack methods on text classification can change the classifiers prediction by synonym substitution. We propose the adversarial sentence rewriting sampler (ASRS), which rewrites the whole sentence to generate more similar and higher-quality adversarial examples. Our method achieves a better attack success rate on 4 out of 7 datasets, as well as significantly better sentence quality on all 7 datasets. ASRS is an indispensable supplement to the existing attack methods, because classifiers cannot resist the attack from ASRS unless they are trained on adversarial examples found by ASRS.
Most adversarial attack methods that are designed to deceive a text classifier change the text classifiers prediction by modifying a few words or characters. Few try to attack classifiers by rewriting a whole sentence, due to the difficulties inheren
We provide the first exploration of text-to-text transformers (T5) sentence embeddings. Sentence embeddings are broadly useful for language processing tasks. While T5 achieves impressive performance on language tasks cast as sequence-to-sequence mapp
In this work, we take the first steps towards building a universal rewriter: a model capable of rewriting text in any language to exhibit a wide variety of attributes, including styles and languages, while preserving as much of the original semantics
Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper
This work improves monolingual sentence alignment for text simplification, specifically for text in standard and simple Wikipedia. We introduce a convolutional neural network structure to model similarity between two sentences. Due to the limitation