ﻻ يوجد ملخص باللغة العربية
The phase stability and equilibria of carbon dioxide is investigated from 125 -- 325K and 1 -- 10,000 atm using extensive molecular dynamics (MD) simulations and the Two-Phase Thermodynamics (2PT) method. We devise a direct approach for calculating phase diagrams in general, by considering the separate chemical potentials of the isolated phase at specific points on the P-T diagram. The unique ability of 2PT to accurately and efficiently approximate the entropy and Gibbs energy of liquids thus allows for assignment of phase boundaries from relatively short ($mathrm{sim}$ 100ps) MD simulations. We validate our approach by calculating the critical properties of the flexible Elementary Physical Model 2 (FEPM2), showing good agreement with previous results. We show, however, that the incorrect description of the short-range Pauli force and the lack of molecular charge polarization leads to deviations from experiments at high pressures. We thus develop a many-body, fluctuating charge model for CO${}_{2}$, termed CO${}_{2}$-Fq, from high level quantum mechanics (QM) calculations, that accurately captures the condensed phase vibrational properties of the solid (including the Fermi resonance at 1378 cm${}^{-1}$) as well as the diffusional properties of the liquid, leading to overall excellent agreement with experiments over the entire phase diagram. This work provides an efficient computational approach for determining phase diagrams of arbitrary systems and underscore the critical role of QM charge reorganization physics in molecular phase stability.
Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different per
The complexity of strongly correlated electron physics in vanadium dioxide is exemplified as its rich phase diagrams of all kinds, which in turn shed light on the mechanisms behind its various phase transitions. In this work, we map out the hydrostat
This paper presents computer simulations of Cu$_x$Zr$_{100-x}$ $(x=36,50,64)$ in the liquid and glass phases. The simulations are based on the effective-medium theory (EMT) potentials. We find good invariance of both structure and dynamics in reduced
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding
We derive a hierarchy of equations which allow a general $n$-body distribution function to be measured by test-particle insertion of between $1$ and $n$ particles, and successfully apply it to measure the pair and three-body distribution functions in