ﻻ يوجد ملخص باللغة العربية
Metamaterials and photonic/phononic crystals have been successfully developed in recent years to achieve advanced wave manipulation and control, both in electromagnetism and mechanics. However, the underlying concepts are yet to be fully applied to the field of fluid dynamics and water waves. Here, we present an example of the interaction of surface gravity waves with a mechanical metamaterial, i.e. periodic underwater oscillating resonators. In particular, we study a device composed by an array of periodic submerged harmonic oscillators whose objective is to absorb wave energy and dissipate it inside the fluid in the form of heat. The study is performed using a state of the art direct numerical simulation of the Navier-Stokes equation in its two-dimensional form with free boundary and moving bodies. We use a Volume of Fluid interface technique for tracking the surface and an Immersed Boundary method for the fluid-structure interaction. We first study the interaction of a monochromatic wave with a single oscillator and then add up to four resonators coupled only fluid-mechanically. We study the efficiency of the device in terms of the total energy dissipation and find that by adding resonators, the dissipation increases in a non trivial way. As expected, a large energy attenuation is achieved when the wave and resonators are characterised by similar frequencies. As the number of resonators is increased, the range of attenuated frequencies also increases. The concept and results presented herein are of relevance for applications in coastal protection.
In this paper, we numerically study the wave turbulence of surface gravity waves in the framework of Euler equations of the free surface. The purpose is to understand the variation of the scaling of the spectra with wavenumber $k$ and energy flux $P$
Third-order approximate solutions for surface gravity waves in the finite water depth are studied in the context of potential flow theory. This solution provides explicit expressions for the surface elevation, free-surface velocity potential and velo
In this paper a fully Eulerian solver for the study of multiphase flows for simulating the propagation of surface gravity waves over submerged bodies is presented. We solve the incompressible Navier-Stokes equations coupled with the volume of fluid t
In this paper, the propagation of water surface waves over one-dimensional periodic and random bottoms is investigated by the transfer matrix method. For the periodic bottoms, the band structure is calculated, and the results are compared to the tran
In this Letter we regard nonlinear gravity-capillary waves with parameter of nonlinearity being $varepsilon sim 0.1 div 0.25$. For this nonlinearity time scale separation does not occur and kinetic wave equation does not hold. An energy cascade in th