ﻻ يوجد ملخص باللغة العربية
We present a novel autoencoder-based approach for designing codes that provide unequal error protection (UEP) capabilities. The proposed design is based on a generalization of an autoencoder loss function that accommodates both message-wise and bit-wise UEP scenarios. In both scenarios, the generalized loss function can be adjusted using an associated weight vector to trade off error probabilities corresponding to different importance classes. For message-wise UEP, we compare the proposed autoencoder-based UEP codes with a union of random coset codes. For bit-wise UEP, the proposed codes are compared with UEP rateless spinal codes and the superposition of random Gaussian codes. In all cases, the autoencoder-based codes show superior performance while providing design simplicity and flexibility in trading off error protection among different importance classes.
Large-scale machine learning and data mining methods routinely distribute computations across multiple agents to parallelize processing. The time required for computation at the agents is affected by the availability of local resources giving rise to
We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can
Polar codes are a class of linear block codes that provably achieves channel capacity, and have been selected as a coding scheme for $5^{rm th}$ generation wireless communication standards. Successive-cancellation (SC) decoding of polar codes has med
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local