ترغب بنشر مسار تعليمي؟ اضغط هنا

VGNMN: Video-grounded Neural Module Network to Video-Grounded Language Tasks

257   0   0.0 ( 0 )
 نشر من قبل Hung Le
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural module networks (NMN) have achieved success in image-grounded tasks such as Visual Question Answering (VQA) on synthetic images. However, very limited work on NMN has been studied in the video-grounded language tasks. These tasks extend the complexity of traditional visual tasks with the additional visual temporal variance. Motivated by recent NMN approaches on image-grounded tasks, we introduce Video-grounded Neural Module Network (VGNMN) to model the information retrieval process in video-grounded language tasks as a pipeline of neural modules. VGNMN first decomposes all language components to explicitly resolve any entity references and detect corresponding action-based inputs from the question. The detected entities and actions are used as parameters to instantiate neural module networks and extract visual cues from the video. Our experiments show that VGNMN can achieve promising performance on two video-grounded language tasks: video QA and video-grounded dialogues.



قيم البحث

اقرأ أيضاً

We address the problem of video captioning by grounding language generation on object interactions in the video. Existing work mostly focuses on overall scene understanding with often limited or no emphasis on object interactions to address the probl em of video understanding. In this paper, we propose SINet-Caption that learns to generate captions grounded over higher-order interactions between arbitrary groups of objects for fine-grained video understanding. We discuss the challenges and benefits of such an approach. We further demonstrate state-of-the-art results on the ActivityNet Captions dataset using our model, SINet-Caption based on this approach.
Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that reli es on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video data to high level textual description, bypassing localization and recognition, thus discarding potentially valuable information for content localization and generalization. In this work we present an automatic video captioning model that combines spatio-temporal attention and image classification by means of deep neural network structures based on long short-term memory. The resulting system is demonstrated to produce state-of-the-art results in the standard YouTube captioning benchmark while also offering the advantage of localizing the visual concepts (subjects, verbs, objects), with no grounding supervision, over space and time.
In this paper, we propose a novel method for video moment retrieval (VMR) that achieves state of the arts (SOTA) performance on R@1 metrics and surpassing the SOTA on the high IoU metric (R@1, IoU=0.7). First, we propose to use a multi-head self-at tention mechanism, and further a cross-attention scheme to capture video/query interaction and long-range query dependencies from video context. The attention-based methods can develop frame-to-query interaction and query-to-frame interaction at arbitrary positions and the multi-head setting ensures the sufficient understanding of complicated dependencies. Our model has a simple architecture, which enables faster training and inference while maintaining . Second, We also propose to use multiple task training objective consists of moment segmentation task, start/end distribution prediction and start/end location regression task. We have verified that start/end prediction are noisy due to annotator disagreement and joint training with moment segmentation task can provide richer information since frames inside the target clip are also utilized as positive training examples. Third, we propose to use an early fusion approach, which achieves better performance at the cost of inference time. However, the inference time will not be a problem for our model since our model has a simple architecture which enables efficient training and inference.
Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over mu ltiple dialogue turns. However, existing approaches to video-grounded dialogues often focus on superficial temporal-level visual cues, but neglect more fine-grained spatial signals from videos. To address this drawback, we propose Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos based on textual cues. Specifically, our approach not only exploits both spatial and temporal-level information, but also learns dynamic information diffusion between the two feature spaces through spatial-to-temporal and temporal-to-spatial reasoning. The bidirectional strategy aims to tackle the evolving semantics of user queries in the dialogue setting. The retrieved visual cues are used as contextual information to construct relevant responses to the users. Our empirical results and comprehensive qualitative analysis show that BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark. We also adapt our BiST models to the Video QA setting, and substantially outperform prior approaches on the TGIF-QA benchmark.
Video captioning has been a challenging and significant task that describes the content of a video clip in a single sentence. The model of video captioning is usually an encoder-decoder. We find that the normalization of extracted video features can improve the final performance of video captioning. Encoder-decoder model is usually trained using teacher-enforced strategies to make the prediction probability of each word close to a 0-1 distribution and ignore other words. In this paper, we present a novel architecture which introduces a guidance module to encourage the encoder-decoder model to generate words related to the past and future words in a caption. Based on the normalization and guidance module, guidance module net (GMNet) is built. Experimental results on commonly used dataset MSVD show that proposed GMNet can improve the performance of the encoder-decoder model on video captioning tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا