ﻻ يوجد ملخص باللغة العربية
Recent years have witnessed an upsurge of interest in the problem of anomaly detection on attributed networks due to its importance in both research and practice. Although various approaches have been proposed to solve this problem, two major limitations exist: (1) unsupervised approaches usually work much less efficiently due to the lack of supervisory signal, and (2) existing anomaly detection methods only use local contextual information to detect anomalous nodes, e.g., one- or two-hop information, but ignore the global contextual information. Since anomalous nodes differ from normal nodes in structures and attributes, it is intuitive that the distance between anomalous nodes and their neighbors should be larger than that between normal nodes and their neighbors if we remove the edges connecting anomalous and normal nodes. Thus, hop counts based on both global and local contextual information can be served as the indicators of anomaly. Motivated by this intuition, we propose a hop-count based model (HCM) to detect anomalies by modeling both local and global contextual information. To make better use of hop counts for anomaly identification, we propose to use hop counts prediction as a self-supervised task. We design two anomaly scores based on the hop counts prediction via HCM model to identify anomalies. Besides, we employ Bayesian learning to train HCM model for capturing uncertainty in learned parameters and avoiding overfitting. Extensive experiments on real-world attributed networks demonstrate that our proposed model is effective in anomaly detection.
Many social and economic systems can be represented as attributed networks encoding the relations between entities who are themselves described by different node attributes. Finding anomalies in these systems is crucial for detecting abuses such as c
Given a network with attributed edges, how can we identify anomalous behavior? Networks with edge attributes are commonplace in the real world. For example, edges in e-commerce networks often indicate how users rated products and services in terms of
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie
Attempting to fully exploit the rich information of topological structure and node features for attributed graph, we introduce self-supervised learning mechanism to graph representation learning and propose a novel Self-supervised Consensus Represent
In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity an