ترغب بنشر مسار تعليمي؟ اضغط هنا

Hop-Count Based Self-Supervised Anomaly Detection on Attributed Networks

105   0   0.0 ( 0 )
 نشر من قبل Tianjin Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years have witnessed an upsurge of interest in the problem of anomaly detection on attributed networks due to its importance in both research and practice. Although various approaches have been proposed to solve this problem, two major limitations exist: (1) unsupervised approaches usually work much less efficiently due to the lack of supervisory signal, and (2) existing anomaly detection methods only use local contextual information to detect anomalous nodes, e.g., one- or two-hop information, but ignore the global contextual information. Since anomalous nodes differ from normal nodes in structures and attributes, it is intuitive that the distance between anomalous nodes and their neighbors should be larger than that between normal nodes and their neighbors if we remove the edges connecting anomalous and normal nodes. Thus, hop counts based on both global and local contextual information can be served as the indicators of anomaly. Motivated by this intuition, we propose a hop-count based model (HCM) to detect anomalies by modeling both local and global contextual information. To make better use of hop counts for anomaly identification, we propose to use hop counts prediction as a self-supervised task. We design two anomaly scores based on the hop counts prediction via HCM model to identify anomalies. Besides, we employ Bayesian learning to train HCM model for capturing uncertainty in learned parameters and avoiding overfitting. Extensive experiments on real-world attributed networks demonstrate that our proposed model is effective in anomaly detection.



قيم البحث

اقرأ أيضاً

Many social and economic systems can be represented as attributed networks encoding the relations between entities who are themselves described by different node attributes. Finding anomalies in these systems is crucial for detecting abuses such as c redit card frauds, web spams or network intrusions. Intuitively, anomalous nodes are defined as nodes whose attributes differ starkly from the attributes of a certain set of nodes of reference, called the context of the anomaly. While some methods have proposed to spot anomalies locally, globally or within a community context, the problem remain challenging due to the multi-scale composition of real networks and the heterogeneity of node metadata. Here, we propose a principled way to uncover outlier nodes simultaneously with the context with respect to which they are anomalous, at all relevant scales of the network. We characterize anomalous nodes in terms of the concentration retained for each node after smoothing specific signals localized on the vertices of the graph. Besides, we introduce a graph signal processing formulation of the Markov stability framework used in community detection, in order to find the context of anomalies. The performance of our method is assessed on synthetic and real-world attributed networks and shows superior results concerning state of the art algorithms. Finally, we show the scalability of our approach in large networks employing Chebychev polynomial approximations.
Given a network with attributed edges, how can we identify anomalous behavior? Networks with edge attributes are commonplace in the real world. For example, edges in e-commerce networks often indicate how users rated products and services in terms of number of stars, and edges in online social and phonecall networks contain temporal information about when friendships were formed and when users communicated with each other -- in such cases, edge attributes capture information about how the adjacent nodes interact with other entities in the network. In this paper, we aim to utilize exactly this information to discern suspicious from typical node behavior. Our work has a number of notable contributions, including (a) formulation: while most other graph-based anomaly detection works use structural graph connectivity or node information, we focus on the new problem of leveraging edge information, (b) methodology: we introduce EdgeCentric, an intuitive and scalable compression-based approach for detecting edge-attributed graph anomalies, and (c) practicality: we show that EdgeCentric successfully spots numerous such anomalies in several large, edge-attributed real-world graphs, including the Flipkart e-commerce graph with over 3 million product reviews between 1.1 million users and 545 thousand products, where it achieved 0.87 precision over the top 100 results.
193 - Chengbin Hou , Shan He , Ke Tang 2018
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie d low dimensional node embeddings while preserving both structural and attribute information. The resulting node embeddings can then facilitate various network downstream tasks e.g. link prediction. Although there are several ANE methods, most of them cannot deal with incomplete attributed networks with missing links and/or missing node attributes, which often occur in real-world scenarios. To address this issue, we propose a robust ANE method, the general idea of which is to reconstruct a unified denser network by fusing two sources of information for information enhancement, and then employ a random walks based network embedding method for learning node embeddings. The experiments of link prediction, node classification, visualization, and parameter sensitivity analysis on six real-world datasets validate the effectiveness of our method to incomplete attributed networks.
Attempting to fully exploit the rich information of topological structure and node features for attributed graph, we introduce self-supervised learning mechanism to graph representation learning and propose a novel Self-supervised Consensus Represent ation Learning (SCRL) framework. In contrast to most existing works that only explore one graph, our proposed SCRL method treats graph from two perspectives: topology graph and feature graph. We argue that their embeddings should share some common information, which could serve as a supervisory signal. Specifically, we construct the feature graph of node features via k-nearest neighbor algorithm. Then graph convolutional network (GCN) encoders extract features from two graphs respectively. Self-supervised loss is designed to maximize the agreement of the embeddings of the same node in the topology graph and the feature graph. Extensive experiments on real citation networks and social networks demonstrate the superiority of our proposed SCRL over the state-of-the-art methods on semi-supervised node classification task. Meanwhile, compared with its main competitors, SCRL is rather efficient.
In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity an d label similarity of vertices in a partially labeled attributed network (PLAN). Our method is designed to work in both transductive and inductive settings while explicitly alleviating noise effects from outliers. Experimental results on various datasets drawn from the web, text and image domains demonstrate the advantages of SEANO over state-of-the-art methods in semi-supervised classification under transductive as well as inductive settings. We also show that a subset of parameters in SEANO is interpretable as outlier score and can significantly outperform baseline methods when applied for detecting network outliers. Finally, we present the use of SEANO in a challenging real-world setting -- flood mapping of satellite images and show that it is able to outperform modern remote sensing algorithms for this task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا