ترغب بنشر مسار تعليمي؟ اضغط هنا

Segmenting Subtitles for Correcting ASR Segmentation Errors

96   0   0.0 ( 0 )
 نشر من قبل David Wan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Typical ASR systems segment the input audio into utterances using purely acoustic information, which may not resemble the sentence-like units that are expected by conventional machine translation (MT) systems for Spoken Language Translation. In this work, we propose a model for correcting the acoustic segmentation of ASR models for low-resource languages to improve performance on downstream tasks. We propose the use of subtitles as a proxy dataset for correcting ASR acoustic segmentation, creating synthetic acoustic utterances by modeling common error modes. We train a neural tagging model for correcting ASR acoustic segmentation and show that it improves downstream performance on MT and audio-document cross-language information retrieval (CLIR).



قيم البحث

اقرأ أيضاً

The main aim of this paper is to investigate automatic quality assessment for spoken language translation (SLT). More precisely, we investigate SLT errors that can be due to transcription (ASR) or to translation (MT) modules. This paper investigates automatic detection of SLT errors using a single classifier based on joint ASR and MT features. We evaluate both 2-class (good/bad) and 3-class (good/badASR/badMT ) labeling tasks. The 3-class problem necessitates to disentangle ASR and MT errors in the speech translation output and we propose two label extraction methods for this non trivial step. This enables - as a by-product - qualitative analysis on the SLT errors and their origin (are they due to transcription or to translation step?) on our large in-house corpus for French-to-English speech translation.
In this work, we focus on improving ASR output segmentation in the context of low-resource language speech-to-text translation. ASR output segmentation is crucial, as ASR systems segment the input audio using purely acoustic information and are not g uaranteed to output sentence-like segments. Since most MT systems expect sentences as input, feeding in longer unsegmented passages can lead to sub-optimal performance. We explore the feasibility of using datasets of subtitles from TV shows and movies to train better ASR segmentation models. We further incorporate part-of-speech (POS) tag and dependency label information (derived from the unsegmented ASR outputs) into our segmentation model. We show that this noisy syntactic information can improve model accuracy. We evaluate our models intrinsically on segmentation quality and extrinsically on downstream MT performance, as well as downstream tasks including cross-lingual information retrieval (CLIR) tasks and human relevance assessments. Our model shows improved performance on downstream tasks for Lithuanian and Bulgarian.
We study semantic parsing in an interactive setting in which users correct errors with natural language feedback. We present NL-EDIT, a model for interpreting natural language feedback in the interaction context to generate a sequence of edits that c an be applied to the initial parse to correct its errors. We show that NL-EDIT can boost the accuracy of existing text-to-SQL parsers by up to 20% with only one turn of correction. We analyze the limitations of the model and discuss directions for improvement and evaluation. The code and datasets used in this paper are publicly available at http://aka.ms/NLEdit.
Masked language models have revolutionized natural language processing systems in the past few years. A recently introduced generalization of masked language models called warped language models are trained to be more robust to the types of errors th at appear in automatic or manual transcriptions of spoken language by exposing the language model to the same types of errors during training. In this work we propose a novel approach that takes advantage of the robustness of warped language models to transcription noise for correcting transcriptions of spoken language. We show that our proposed approach is able to achieve up to 10% reduction in word error rates of both automatic and manual transcriptions of spoken language.
Speech-enabled systems typically first convert audio to text through an automatic speech recognition (ASR) model and then feed the text to downstream natural language processing (NLP) modules. The errors of the ASR system can seriously downgrade the performance of the NLP modules. Therefore, it is essential to make them robust to the ASR errors. Previous work has shown it is effective to employ data augmentation methods to solve this problem by injecting ASR noise during the training process. In this paper, we utilize the prevalent pre-trained language model to generate training samples with ASR-plausible noise. Compare to the previous methods, our approach generates ASR noise that better fits the real-world error distribution. Experimental results on spoken language translation(SLT) and spoken language understanding (SLU) show that our approach effectively improves the system robustness against the ASR errors and achieves state-of-the-art results on both tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا