ﻻ يوجد ملخص باللغة العربية
Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, decoding, and candidate ranking in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.
Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper
Sentence function is an important linguistic feature indicating the communicative purpose in uttering a sentence. Incorporating sentence functions into conversations has shown improvements in the quality of generated responses. However, the number of
A natural image usually conveys rich semantic content and can be viewed from different angles. Existing image description methods are largely restricted by small sets of biased visual paragraph annotations, and fail to cover rich underlying semantics
The variational autoencoder (VAE) imposes a probabilistic distribution (typically Gaussian) on the latent space and penalizes the Kullback--Leibler (KL) divergence between the posterior and prior. In NLP, VAEs are extremely difficult to train due to
Word2vec (Mikolov et al., 2013) has proven to be successful in natural language processing by capturing the semantic relationships between different words. Built on top of single-word embeddings, paragraph vectors (Le and Mikolov, 2014) find fixed-le