ترغب بنشر مسار تعليمي؟ اضغط هنا

Manipulation and readout of spin states of a single-molecule magnet by a spin-polarized current

72   0   0.0 ( 0 )
 نشر من قبل Hai-Bin Xue
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-molecule memory device based on a single-molecule magnet (SMM) is one of the ultimate goals of semiconductor nanofabrication technologies. Here, we study how to manipulate and readout the SMMs two spin-state of stored information that characterized by the maximum and minimum average value of the $Z$-component of the total spin of the SMM and the conduction-electron, which are recognized as the information bits $1$ and $0$. We demonstrate that the switching time depends on both the sequential tunneling gap $varepsilon_{se}$ and the spin-selection-rule allowed transition-energy $varepsilon_{trans}$, which can be tuned by the gate voltage. In particular, when the external bias voltage is turned off, in the cases of the unoccupied and doubly-occupied ground eigenstates, the time derivative of the transport current can be used to read out the SMMs two spin-state of stored information. Moreover, the tunneling strength of and the asymmetry of the SMM-electrode coupling have a strong influence on the switching time, but that have a slight influence on the readout time that being on the order of nanoseconds. Our results suggest a SMM-based memory device, and provide fundamental insight into the electrical controllable manipulation and readout of the SMMs two spin-state of stored information.



قيم البحث

اقرأ أيضاً

We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
We theoretically study the spin-polarized transport through a single-molecule magnet, which is weakly coupled to ferromagnetic leads, by means of the rate-equation approach. We consider both the ferromagnetic and antiferromagnetic exchange-couplings between the molecular magnet and transported electron-spin in the nonlinear tunneling regime. For the ferromagnetic exchangecoupling, spin current exhibits step- and basin-like behaviors in the parallel and antiparallel configurations respectively. An interesting observation is that the polarization reversal of spin-current can be realized and manipulated by the variation of bias voltage in the case of antiferromagnetic exchange-coupling with antiparallel lead-configuration, which may be useful in the development of spintronic devices, while the bias voltage can only affect the magnitude of spin-polarization in the ferromagnetic coupling.
Silicon spin qubits are promising candidates for realising large scale quantum processors, benefitting from a magnetically quiet host material and the prospects of leveraging the mature silicon device fabrication industry. We report the measurement o f an electron spin in a singly-occupied gate-defined quantum dot, fabricated using CMOS compatible processes at the 300 mm wafer scale. For readout, we employ spin-dependent tunneling combined with a low-footprint single-lead quantum dot charge sensor, measured using radiofrequency gate reflectometry. We demonstrate spin readout in two devices using this technique, obtaining valley splittings in the range 0.5-0.7 meV using excited state spectroscopy, and measure a maximum electron spin relaxation time ($T_1$) of $9 pm 3$ s at 1 Tesla. These long lifetimes indicate the silicon nanowire geometry and fabrication processes employed here show a great deal of promise for qubit devices, while the spin-readout method demonstrated here is well-suited to a variety of scalable architectures.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
87 - K. Chang , A. Eichler , 2016
Charge transport in nanostructures and thin films is fundamental to many phenomena and processes in science and technology, ranging from quantum effects and electronic correlations in mesoscopic physics, to integrated charge- or spin-based electronic circuits, to photoactive layers in energy research. Direct visualization of the charge flow in such structures is challenging due to their nanometer size and the itinerant nature of currents. In this work, we demonstrate non-invasive magnetic imaging of current density in two-dimensional conductor networks including metallic nanowires and carbon nanotubes. Our sensor is the electronic spin of a diamond nitrogen-vacancy center attached to a scanning tip. Using a differential measurement technique, we detect DC currents down to a few uA above a baseline current density of 2e4 A/cm2. Reconstructed images have a spatial resolution of typically 50 nm, with a best-effort value of 22 nm. Current density imaging offers a new route for studying electronic transport and conductance variations in two-dimensional materials and devices, with many exciting applications in condensed matter physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا