ﻻ يوجد ملخص باللغة العربية
This paper investigates how to correct Chinese text errors with types of mistaken, missing and redundant characters, which is common for Chinese native speakers. Most existing models based on detect-correct framework can correct mistaken characters errors, but they cannot deal with missing or redundant characters. The reason is that lengths of sentences before and after correction are not the same, leading to the inconsistence between model inputs and outputs. Although the Seq2Seq-based or sequence tagging methods provide solutions to the problem and achieved relatively good results on English context, but they do not perform well in Chinese context according to our experimental results. In our work, we propose a novel detect-correct framework which is alignment-agnostic, meaning that it can handle both text aligned and non-aligned occasions, and it can also serve as a cold start model when there are no annotated data provided. Experimental results on three datasets demonstrate that our method is effective and achieves the best performance among existing published models.
We investigate the problem of Chinese Grammatical Error Correction (CGEC) and present a new framework named Tail-to-Tail (textbf{TtT}) non-autoregressive sequence prediction to address the deep issues hidden in CGEC. Considering that most tokens are
Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries fo
Error correction techniques have been used to refine the output sentences from automatic speech recognition (ASR) models and achieve a lower word error rate (WER) than original ASR outputs. Previous works usually use a sequence-to-sequence model to c
With the development of information technology, there is an explosive growth in the number of online comment concerning news, blogs and so on. The massive comments are overloaded, and often contain some misleading and unwelcome information. Therefore
Neural sequence-to-sequence (seq2seq) approaches have proven to be successful in grammatical error correction (GEC). Based on the seq2seq framework, we propose a novel fluency boost learning and inference mechanism. Fluency boosting learning generate