ﻻ يوجد ملخص باللغة العربية
Multipartite entanglement is an essential resource for quantum communication, quantum computing, quantum sensing, and quantum networks. The utility of a quantum state, $|psirangle$, for these applications is often directly related to the degree or type of entanglement present in $|psirangle$. Therefore, efficiently quantifying and characterizing multipartite entanglement is of paramount importance. In this work, we introduce a family of multipartite entanglement measures, called Concentratable Entanglements. Several well-known entanglement measures are recovered as special cases of our family of measures, and hence we provide a general framework for quantifying multipartite entanglement. We prove that the entire family does not increase, on average, under Local Operations and Classical Communications. We also provide an operational meaning for these measures in terms of probabilistic concentration of entanglement into Bell pairs. Finally, we show that these quantities can be efficiently estimated on a quantum computer by implementing a parallelized SWAP test, opening up a research direction for measuring multipartite entanglement on quantum devices.
We introduce two operational entanglement measures which are applicable for arbitrary multipartite (pure or mixed) states. One of them characterizes the potentiality of a state to generate other states via local operations assisted by classical commu
A new entanglement measure, the multiple entropy measures (MEMS), is proposed to quantify quantum entanglement of multi-partite quantum state. The MEMS is vector-like with $m=[N/2]$, the integer part of $N/2$, components: $[S_1, S_2,..., S_m]$, and t
New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the
For indistinguishable itinerant particles subject to a superselection rule fixing their total number, a portion of the entanglement entropy under a spatial bipartition of the ground state is due to particle fluctuations between subsystems and thus is
We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetric