ﻻ يوجد ملخص باللغة العربية
Muffin-tin methods have been instrumental in the design of honeycomb lattices that show, in contrast to graphene, separated s and in-plane p bands, a p orbital Dirac cone, and a p orbital flat band. Recently, such lattices have been experimentally realized using the 2D electron gas on Cu(111). A possible next avenue is the introduction of spin-orbit coupling to these systems. Intrinsic spin-orbit coupling is believed to open topological gaps, and create a topological flat band. Although Rashba coupling is straightforwardly incorporated in the muffin-tin approximation, intrinsic spin-orbit coupling has only been included either for a very specific periodic system, or only close to the Dirac point. Here, we introduce general intrinsic and Rashba spin-orbit terms in the Hamiltonian for both periodic and finite-size systems. We observe a strong band opening over the entire Brillouin zone between the p orbital flat band and Dirac cone hosting a pronounced edge state, robust against the effects of Rashba spin-orbit coupling.
We report the experimental and theoretical characterization of the angular-dependent spin dynamics in arrays of ferromagnetic nanodisks arranged on a honeycomb lattice. The magnetic field and microwave frequency dependence, measured by broadband ferr
We present electronic structure calculations of twisted double bilayer graphene (TDBG): A tetralayer graphene structure composed of two AB-stacked graphene bilayers with a relative rotation angle between them. Using first-principles calculations, we
Artificial spin ice (ASI) are arrays on nanoscaled magnets that can serve both as models for frustration in atomic spin ice as well as for exploring new spin-wave-based strategies to transmit, process, and store information. Here, we exploit the intr
Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich s
Geometrically frustrated materials, such as spin ice or kagome lattice, are known to exhibit exotic Hall effect phenomena due to spin chirality. We explore Hall effect mechanism in an artificial honeycomb spin ice of Nd--Sn element using Hall probe a