ﻻ يوجد ملخص باللغة العربية
Instrumental variable methods are among the most commonly used causal inference approaches to account for unmeasured confounders in observational studies. The presence of invalid instruments is a major concern for practical applications and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. The existing inference methods rely on correctly separating valid and invalid instruments in a data dependent way. In this paper, we illustrate post-selection problems of these existing methods. We construct uniformly valid confidence intervals for the causal effect, which are robust to the mistakes in separating valid and invalid instruments. Our proposal is to search for the causal effect such that a sufficient amount of candidate instruments can be taken as valid. We further devise a novel sampling method, which, together with searching, lead to a more precise confidence interval. Our proposed searching and sampling confidence intervals are shown to be uniformly valid under the finite-sample majority and plurality rules. We compare our proposed methods with existing inference methods over a large set of simulation studies and apply them to study the effect of the triglyceride level on the glucose level over a mouse data set.
Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable exclusion assumptions that rule out any relationshi
Mendelian randomization (MR) has become a popular approach to study causal effects by using genetic variants as instrumental variables. We propose a new MR method, GENIUS-MAWII, which simultaneously addresses the two salient phenomena that adversely
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari
We propose novel estimators for categorical and continuous treatments by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contras