ﻻ يوجد ملخص باللغة العربية
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition, which aims to match a pair of face images captured from two different modalities. Existing deep learning based methods have made remarkable progress in NIR-VIS face recognition, while it encounters certain newly-emerged difficulties during the pandemic of COVID-19, since people are supposed to wear facial masks to cut off the spread of the virus. We define this task as NIR-VIS masked face recognition, and find it problematic with the masked face in the NIR probe image. First, the lack of masked face data is a challenging issue for the network training. Second, most of the facial parts (cheeks, mouth, nose etc.) are fully occluded by the mask, which leads to a large amount of loss of information. Third, the domain gap still exists in the remaining facial parts. In such scenario, the existing methods suffer from significant performance degradation caused by the above issues. In this paper, we aim to address the challenge of NIR-VIS masked face recognition from the perspectives of training data and training method. Specifically, we propose a novel heterogeneous training method to maximize the mutual information shared by the face representation of two domains with the help of semi-siamese networks. In addition, a 3D face reconstruction based approach is employed to synthesize masked face from the existing NIR image. Resorting to these practices, our solution provides the domain-invariant face representation which is also robust to the mask occlusion. Extensive experiments on three NIR-VIS face datasets demonstrate the effectiveness and cross-dataset-generalization capacity of our method.
In the face recognition application scenario, we need to process facial images captured in various conditions, such as at night by near-infrared (NIR) surveillance cameras. The illumination difference between NIR and visible-light (VIS) causes a doma
In order to effectively prevent the spread of COVID-19 virus, almost everyone wears a mask during coronavirus epidemic. This almost makes conventional facial recognition technology ineffective in many cases, such as community access control, face acc
This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The aff
In this paper, we address the problem of face recognition with masks. Given the global health crisis caused by COVID-19, mouth and nose-covering masks have become an essential everyday-clothing-accessory. This sanitary measure has put the state-of-th
During the COVID-19 coronavirus epidemic, almost everyone wears a facial mask, which poses a huge challenge to deep face recognition. In this workshop, we organize Masked Face Recognition (MFR) challenge and focus on bench-marking deep face recogniti