ﻻ يوجد ملخص باللغة العربية
Change detection from synthetic aperture radar (SAR) imagery is a critical yet challenging task. Existing methods mainly focus on feature extraction in spatial domain, and little attention has been paid to frequency domain. Furthermore, in patch-wise feature analysis, some noisy features in the marginal region may be introduced. To tackle the above two challenges, we propose a Dual-Domain Network. Specifically, we take features from the discrete cosine transform domain into consideration and the reshaped DCT coefficients are integrated into the proposed model as the frequency domain branch. Feature representations from both frequency and spatial domain are exploited to alleviate the speckle noise. In addition, we further propose a multi-region convolution module, which emphasizes the central region of each patch. The contextual information and central region features are modeled adaptively. The experimental results on three SAR datasets demonstrate the effectiveness of the proposed model. Our codes are available at https://github.com/summitgao/SAR_CD_DDNet.
Many researches have been carried out for change detection using temporal SAR images. In this paper an algorithm for change detection using SAR videos has been proposed. There are various challenges related to SAR videos such as high level of speckle
Data and data sources have become increasingly essential in recent decades. Scientists and researchers require more data to deploy AI approaches as the field continues to improve. In recent years, the rapid technological advancements have had a signi
We propose a saliency-based, multi-target detection and segmentation framework for multi-aspect, semi-coherent imagery formed from circular-scan, synthetic-aperture sonar (CSAS). Our framework relies on a multi-branch, convolutional encoder-decoder n
Semantic change detection (SCD) extends the multi-class change detection (MCD) task to provide not only the change locations but also the detailed land-cover/land-use (LCLU) categories before and after the observation intervals. This fine-grained sem
Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly imp