ترغب بنشر مسار تعليمي؟ اضغط هنا

Human-in-the-Loop Fault Localisation Using Efficient Test Prioritisation of Generated Tests

62   0   0.0 ( 0 )
 نشر من قبل Gabin An
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many existing fault localisation techniques become less effective or even inapplicable when not adequately supported by a rich test suite. To overcome this challenge, we present a human-in-the-loop fault localisation technique, QFiD, that works with only a small number of initial failing test cases. We augment the failing test cases with automatically generated test data and elicit oracles from a human developer to label the test cases. A new result-aware test prioritisation metric allows us to significantly reduce the labelling effort by prioritising the test cases to achieve maximum localisation accuracy. An evaluation with EvoSuite and our test prioritisation metric shows that QFiD can significantly increase the localisation accuracy. After only ten human labellings, QFiD can localise 27% and 66% of real-world faults in Defects4J at the top and within the top ten, respectively. This is a 13 and 2 times higher performance than when using the initial test cases. QFiD is also resilient to human errors, retaining 80% of its acc@1 performance on average when we introduce a 30% error rate to the simulated human oracle.



قيم البحث

اقرأ أيضاً

Context: Regression testing activities greatly reduce the risk of faulty software release. However, the size of the test suites grows throughout the development process, resulting in time-consuming execution of the test suite and delayed feedback to the software development team. This has urged the need for approaches such as test case prioritization (TCP) and test-suite reduction to reach better results in case of limited resources. In this regard, proposing approaches that use auxiliary sources of data such as bug history can be interesting. Objective: Our aim is to propose an approach for TCP that takes into account test case coverage data, bug history, and test case diversification. To evaluate this approach we study its performance on real-world open-source projects. Method: The bug history is used to estimate the fault-proneness of source code areas. The diversification of test cases is preserved by incorporating fault-proneness on a clustering-based approach scheme. Results: The proposed methods are evaluated on datasets collected from the development history of five real-world projects including 3
We introduce Learn2fix, the first human-in-the-loop, semi-automatic repair technique when no bug oracle--except for the user who is reporting the bug--is available. Our approach negotiates with the user the condition under which the bug is observed. Only when a budget of queries to the user is exhausted, it attempts to repair the bug. A query can be thought of as the following question: When executing this alternative test input, the program produces the following output; is the bug observed? Through systematic queries, Learn2fix trains an automatic bug oracle that becomes increasingly more accurate in predicting the users response. Our key challenge is to maximize the oracles accuracy in predicting which tests are bug-exposing given a small budget of queries. From the alternative tests that were labeled by the user, test-driven automatic repair produces the patch. Our experiments demonstrate that Learn2fix learns a sufficiently accurate automatic oracle with a reasonably low labeling effort (lt. 20 queries). Given Learn2fixs test suite, the GenProg test-driven repair tool produces a higher-quality patch (i.e., passing a larger proportion of validation tests) than using manual test suites provided with the repair benchmark.
Regression testing is an important phase to deliver software with quality. However, flaky tests hamper the evaluation of test results and can increase costs. This is because a flaky test may pass or fail non-deterministically and to identify properly the flakiness of a test requires rerunning the test suite multiple times. To cope with this challenge, approaches have been proposed based on prediction models and machine learning. Existing approaches based on the use of the test case vocabulary may be context-sensitive and prone to overfitting, presenting low performance when executed in a cross-project scenario. To overcome these limitations, we investigate the use of test smells as predictors of flaky tests. We conducted an empirical study to understand if test smells have good performance as a classifier to predict the flakiness in the cross-project context, and analyzed the information gain of each test smell. We also compared the test smell-based approach with the vocabulary-based one. As a result, we obtained a classifier that had a reasonable performance (Random Forest, 0.83) to predict the flakiness in the testing phase. This classifier presented better performance than vocabulary-based model for cross-project prediction. The Assertion Roulette and Sleepy Test test smell types are the ones associated with the best information gain values.
Imitation Learning is a promising paradigm for learning complex robot manipulation skills by reproducing behavior from human demonstrations. However, manipulation tasks often contain bottleneck regions that require a sequence of precise actions to ma ke meaningful progress, such as a robot inserting a pod into a coffee machine to make coffee. Trained policies can fail in these regions because small deviations in actions can lead the policy into states not covered by the demonstrations. Intervention-based policy learning is an alternative that can address this issue -- it allows human operators to monitor trained policies and take over control when they encounter failures. In this paper, we build a data collection system tailored to 6-DoF manipulation settings, that enables remote human operators to monitor and intervene on trained policies. We develop a simple and effective algorithm to train the policy iteratively on new data collected by the system that encourages the policy to learn how to traverse bottlenecks through the interventions. We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators, and further show that our method outperforms multiple state-of-the-art baselines for learning from the human interventions on a challenging robot threading task and a coffee making task. Additional results and videos at https://sites.google.com/stanford.edu/iwr .
Automated testing tools typically create test cases that are different from what human testers create. This often makes the tools less effective, the created tests harder to understand, and thus results in tools providing less support to human tester s. Here, we propose a framework based on cognitive science and, in particular, an analysis of approaches to problem-solving, for identifying cognitive processes of testers. The framework helps map test design steps and criteria used in human test activities and thus to better understand how effective human testers perform their tasks. Ultimately, our goal is to be able to mimic how humans create test cases and thus to design more human-like automated test generation systems. We posit that such systems can better augment and support testers in a way that is meaningful to them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا