ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoupled Spatial-Temporal Transformer for Video Inpainting

127   0   0.0 ( 0 )
 نشر من قبل Rui Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video inpainting aims to fill the given spatiotemporal holes with realistic appearance but is still a challenging task even with prosperous deep learning approaches. Recent works introduce the promising Transformer architecture into deep video inpainting and achieve better performance. However, it still suffers from synthesizing blurry texture as well as huge computational cost. Towards this end, we propose a novel Decoupled Spatial-Temporal Transformer (DSTT) for improving video inpainting with exceptional efficiency. Our proposed DSTT disentangles the task of learning spatial-temporal attention into 2 sub-tasks: one is for attending temporal object movements on different frames at same spatial locations, which is achieved by temporally-decoupled Transformer block, and the other is for attending similar background textures on same frame of all spatial positions, which is achieved by spatially-decoupled Transformer block. The interweaving stack of such two blocks makes our proposed model attend background textures and moving objects more precisely, and thus the attended plausible and temporally-coherent appearance can be propagated to fill the holes. In addition, a hierarchical encoder is adopted before the stack of Transformer blocks, for learning robust and hierarchical features that maintain multi-level local spatial structure, resulting in the more representative token vectors. Seamless combination of these two novel designs forms a better spatial-temporal attention scheme and our proposed model achieves better performance than state-of-the-art video inpainting approaches with significant boosted efficiency.



قيم البحث

اقرأ أيضاً

We present a novel technique for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to enc ourage multi-scale understanding. Motivated by their effectiveness in supervised learning, we first introduce spatial-temporal feature learning decoupling and hierarchical learning to the context of unsupervised video learning. We show by experiments that augmentations can be manipulated as regularization to guide the network to learn desired semantics in contrastive learning, and we propose a way for the model to separately capture spatial and temporal features at multiple scales. We also introduce an approach to overcome the problem of divergent levels of instance invariance at different hierarchies by modeling the invariance as loss weights for objective re-weighting. Experiments on downstream action recognition benchmarks on UCF101 and HMDB51 show that our proposed Hierarchically Decoupled Spatial-Temporal Contrast (HDC) makes substantial improvements over directly learning spatial-temporal features as a whole and achieves competitive performance when compared with other state-of-the-art unsupervised methods. Code will be made available.
Dynamic scene graph generation aims at generating a scene graph of the given video. Compared to the task of scene graph generation from images, it is more challenging because of the dynamic relationships between objects and the temporal dependencies between frames allowing for a richer semantic interpretation. In this paper, we propose Spatial-temporal Transformer (STTran), a neural network that consists of two core modules: (1) a spatial encoder that takes an input frame to extract spatial context and reason about the visual relationships within a frame, and (2) a temporal decoder which takes the output of the spatial encoder as input in order to capture the temporal dependencies between frames and infer the dynamic relationships. Furthermore, STTran is flexible to take varying lengths of videos as input without clipping, which is especially important for long videos. Our method is validated on the benchmark dataset Action Genome (AG). The experimental results demonstrate the superior performance of our method in terms of dynamic scene graphs. Moreover, a set of ablative studies is conducted and the effect of each proposed module is justified. Code available at: https://github.com/yrcong/STTran.
Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time dimension. In this work, we propose a novel deep network architecture for fast video inpainting. Built upon an image-based encoder-decoder model, our framework is designed to collect and refine information from neighbor frames and synthesize still-unknown regions. At the same time, the output is enforced to be temporally consistent by a recurrent feedback and a temporal memory module. Compared with the state-of-the-art image inpainting algorithm, our method produces videos that are much more semantically correct and temporally smooth. In contrast to the prior video completion method which relies on time-consuming optimization, our method runs in near real-time while generating competitive video results. Finally, we applied our framework to video retargeting task, and obtain visually pleasing results.
Video question answering (VideoQA) is challenging given its multimodal combination of visual understanding and natural language understanding. While existing approaches seldom leverage the appearance-motion information in the video at multiple tempor al scales, the interaction between the question and the visual information for textual semantics extraction is frequently ignored. Targeting these issues, this paper proposes a novel Temporal Pyramid Transformer (TPT) model with multimodal interaction for VideoQA. The TPT model comprises two modules, namely Question-specific Transformer (QT) and Visual Inference (VI). Given the temporal pyramid constructed from a video, QT builds the question semantics from the coarse-to-fine multimodal co-occurrence between each word and the visual content. Under the guidance of such question-specific semantics, VI infers the visual clues from the local-to-global multi-level interactions between the question and the video. Within each module, we introduce a multimodal attention mechanism to aid the extraction of question-video interactions, with residual connections adopted for the information passing across different levels. Through extensive experiments on three VideoQA datasets, we demonstrate better performances of the proposed method in comparison with the state-of-the-arts.
Compared with image scene parsing, video scene parsing introduces temporal information, which can effectively improve the consistency and accuracy of prediction. In this paper, we propose a Spatial-Temporal Semantic Consistency method to capture clas s-exclusive context information. Specifically, we design a spatial-temporal consistency loss to constrain the semantic consistency in spatial and temporal dimensions. In addition, we adopt an pseudo-labeling strategy to enrich the training dataset. We obtain the scores of 59.84% and 58.85% mIoU on development (test part 1) and testing set of VSPW, respectively. And our method wins the 1st place on VSPW challenge at ICCV2021.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا