ﻻ يوجد ملخص باللغة العربية
It is well known that linear rank-metric codes give rise to $q$-polymatroids. Analogously to classical matroid theory one may ask whether a given $q$-polymatroid is representable by a rank-metric code. We provide a partial answer by presenting examples of $q$-matroids that are not representable by ${mathbb F}_{q^m}$-linear rank-metric codes. We then go on and introduce deletion and contraction for $q$-polymatroids and show that they are mutually dual and that they correspond to puncturing and shortening of rank-metric codes. Finally, we introduce a closure operator along with the notion of flats and show that the generalized rank weights of a rank-metric code are fully determined by the flats of the associated $q$-polymatroid.
We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes in the rank metric, lifted interleaved Gabidulin codes in the subspace metric, and linearized Reed-Solomon codes in the sum-rank metric.
In this note, we provide a description of the elements of minimum rank of a generalized Gabidulin code in terms of Grassmann coordinates. As a consequence, a characterization of linearized polynomials of rank at most $n-k$ is obtained, as well as par
This paper extends the study of rank-metric codes in extension fields $mathbb{L}$ equipped with an arbitrary Galois group $G = mathrm{Gal}(mathbb{L}/mathbb{K})$. We propose a framework for studying these codes as subspaces of the group algebra $mathb
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been
This paper investigates the theory of sum-rank metric codes for which the individual matrix blocks may have different sizes. Various bounds on the cardinality of a code are derived, along with their asymptotic extensions. The duality theory of sum-ra