ﻻ يوجد ملخص باللغة العربية
In bilayers consisting of a normal metal (N) with spin-orbit coupling and a ferromagnet (F), the combination of the spin-Hall effect, the spin-transfer torque, and the inverse spin-Hall effect gives a small correction to the in-plane conductivity of N, which is referred to as spin-Hall magnetoresistance (SMR). We here present a theory of the SMR and the associated off-diagonal conductivity corrections for frequencies up to the terahertz regime. We show that the SMR signal has pronounced singularities at the spin-wave frequencies of F, which identifies it as a potential tool for all-electric spectroscopy of magnon modes. A systematic change of the magnitude of the SMR at lower frequencies is associated with the onset of a longitudinal magnonic contribution to spin transport across the F-N interface.
We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the
We present a theory of the spin Hall magnetoresistance of metals in contact with magnetic insulators. We express the spin-mixing conductances, which govern the phenomenology of the effect, in terms of the microscopic parameters of the interface and t
We develop an analytical theory of the low-frequency $ac$ quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the $ac$ QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is c
We observe that the illumination of unbiased graphene in the quantum Hall regime with polarized terahertz laser radiation results in a direct edge current. This photocurrent is caused by an imbalance of persistent edge currents, which are driven out
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers w