ﻻ يوجد ملخص باللغة العربية
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems, using the example of the fermionic Hubbard model. Concretely, we study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed. We locate this transition and solve for the ground state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer. Our results are enabled by a variational ansatz that takes full advantage of the maximal set of commuting $mathbb{Z}_2$ symmetries of the problem and a Lanczos-inspired error mitigation algorithm. They are a benchmark on the way to exploiting near term quantum simulators for quantum many-body problems.
Modern cryptography is largely based on complexity assumptions, for example, the ubiquitous RSA is based on the supposed complexity of the prime factorization problem. Thus, it is of fundamental importance to understand how a quantum computer would e
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant
For variational algorithms on the near term quantum computing hardware, it is highly desirable to use very accurate ansatze with low implementation cost. Recent studies have shown that the antisymmetrized geminal power (AGP) wavefunction can be an ex
We present an algorithm that extends existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to include bosons in general and phonons in particular. We introduce a qubit representation for the low-
Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic