ﻻ يوجد ملخص باللغة العربية
The development of NekRS, a GPU-oriented thermal-fluids simulation code based on the spectral element method (SEM) is described. For performance portability, the code is based on the open concurrent compute abstraction and leverages scalable developments in the SEM code Nek5000 and in libParanumal, which is a library of high-performance kernels for high-order discretizations and PDE-based miniapps. Critical performance sections of the Navier-Stokes time advancement are addressed. Performance results on several platforms are presented, including scaling to 27,648 V100s on OLCF Summit, for calculations of up to 60B gridpoints.
Developing efficient GPU kernels can be difficult because of the complexity of GPU architectures and programming models. Existing performance tools only provide coarse-grained suggestions at the kernel level, if any. In this paper, we describe GPA, a
WarpX is a general purpose electromagnetic particle-in-cell code that was originally designed to run on many-core CPU architectures. We describe the strategy followed to allow WarpX to use the GPU-accelerated nodes on OLCFs Summit supercomputer, a st
Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and the
We consider several methods for generating initial guesses when iteratively solving sequences of linear systems, showing that they can be implemented efficiently in GPU-accelerated PDE solvers, specifically solvers for incompressible flow. We propose
We propose an efficient, accurate and robust implicit solver for the incompressible Navier-Stokes equations, based on a DG spatial discretization and on the TR-BDF2 method for time discretization. The effectiveness of the method is demonstrated in a