ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary solutions for fast flavor oscillations of a homogeneous dense neutrino gas

61   0   0.0 ( 0 )
 نشر من قبل Zewei Xiong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to find the stationary solutions for fast flavor oscillations of a homogeneous dense neutrino gas. These solutions correspond to collective rotation of all neutrino polarization vectors around a fixed axis in the flavor space on average, and are conveniently studied in the co-rotating frame. We show that these solutions can account for the numerical results of explicit evolution calculations, and that even with the simplest assumption of adiabatic evolution, they can provide the average survival probabilities to good approximation. We also discuss improvement of these solutions and their use as estimates of the effects of fast oscillations in astrophysical environments.



قيم البحث

اقرأ أيضاً

We investigate the importance of going beyond the mean-field approximation in the dynamics of collective neutrino oscillations. To expand our understanding of the coherent neutrino oscillation problem, we apply concepts from many-body physics and qua ntum information theory. Specifically, we use measures of nontrivial correlations (otherwise known as entanglement) between the constituent neutrinos of the many-body system, such as the entanglement entropy and the Bloch vector of the reduced density matrix. The relevance of going beyond the mean field is demonstrated by comparisons between the evolution of the neutrino state in the many-body picture vs the mean-field limit, for different initial conditions.
We investigate the impact of the nonzero neutrino splitting and elastic neutrino-nucleon collisions on fast neutrino oscillations. Our calculations confirm that a small neutrino mass splitting and the neutrino mass hierarchy have very little effect o n fast oscillation waves. We also demonstrate explicitly that fast oscillations remain largely unaffected for the time/distance scales that are much smaller than the neutrino mean free path but are damped on larger scales. This damping originates from both the direct modification of the dispersion relation of the oscillation waves in the neutrino medium and the flattening of the neutrino angular distributions over time. Our work suggests that fast neutrino oscillation waves produced near the neutrino sphere can propagate essentially unimpeded which may have ramifications in various aspects of the supernova physics.
Neutrino-neutrino refraction dominates the flavor evolution in core-collapse supernovae, neutron-star mergers, and the early universe. Ordinary neutrino flavor conversion develops on timescales determined by the vacuum oscillation frequency. However, when the neutrino density is large enough, collective flavor conversion may arise because of pairwise neutrino scattering. Pairwise conversion is deemed to be fast as it is expected to occur on timescales that depend on the neutrino-neutrino interaction energy (i.e., on the neutrino number density) and is regulated by the angular distributions of electron neutrinos and antineutrinos. The enigmatic phenomenon of fast pairwise conversion has been overlooked for a long time. However, because of the fast conversion rate, pairwise conversion may possibly occur in the proximity of the neutrino decoupling region with yet to be understood implications for the hydrodynamics of astrophysical sources and the synthesis of the heavy elements. We review the physics of this fascinating phenomenon and its implications for neutrino-dense sources.
The flavor transformation in a dense neutrino gas can have a significant impact on the physical and chemical evolution of its surroundings. In this work we demonstrate that a dynamic, fast flavor oscillation wave can develop spontaneously in a one-di mensional (1D) neutrino gas when the angular distributions of the electron neutrino and antineutrino cross each other. Unlike the 2D stationary models which are plagued with small-scale flavor structures, the fast flavor oscillation waves remain coherent in the dynamic 1D model in both the position and momentum spaces of the neutrino. The electron lepton number is redistributed and transported in space as the flavor oscillation wave propagates, although the total lepton number remains constant. This result may have interesting implications in the neutrino emission in and the evolution of the compact objects such as core-collapse supernovae.
The flavor conversion of a neutrino usually occurs at densities $lesssim G_F^{-1} omega$, whether in the ordinary matter or the neutrino medium, and on time/distance scales of order $omega^{-1}$, where $G_F$ is the Fermi weak coupling constant and $o mega$ is the vacuum oscillation frequency of the neutrino. In 2005 Sawyer and more recently both he and other groups have shown that neutrino flavor
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا