ﻻ يوجد ملخص باللغة العربية
Voice activity detection (VAD) remains a challenge in noisy environments. With access to multiple microphones, prior studies have attempted to improve the noise robustness of VAD by creating multi-channel VAD (MVAD) methods. However, MVAD is relatively new compared to single-channel VAD (SVAD), which has been thoroughly developed in the past. It might therefore be advantageous to improve SVAD methods with pre-processing to obtain superior VAD, which is under-explored. This paper improves SVAD through two pre-processing methods, a beamformer and a spatial target speaker detector. The spatial detector sets signal frames to zero when no potential speaker is present within a target direction. The detector may be implemented as a filter, meaning the input signal for the SVAD is filtered according to the detectors output; or it may be implemented as a spatial VAD to be combined with the SVAD output. The evaluation is made on a noisy reverberant speech database, with clean speech from the Aurora 2 database and with white and babble noise. The results show that SVAD algorithms are significantly improved by the presented pre-processing methods, especially the spatial detector, across all signal-to-noise ratios. The SVAD algorithms with pre-processing significantly outperform a baseline MVAD in challenging noise conditions.
Voice activity detection (VAD) is an essential pre-processing step for tasks such as automatic speech recognition (ASR) and speaker recognition. A basic goal is to remove silent segments within an audio, while a more general VAD system could remove a
Due to the unprecedented breakthroughs brought about by deep learning, speech enhancement (SE) techniques have been developed rapidly and play an important role prior to acoustic modeling to mitigate noise effects on speech. To increase the perceptua
This letter introduces a novel speech enhancement method in the Hilbert-Huang Transform domain to mitigate the effects of acoustic impulsive noises. The estimation and selection of noise components is based on the impulsiveness index of decomposition
We address the problem of privately communicating audio messages to multiple listeners in a reverberant room using a set of loudspeakers. We propose two methods based on emitting noise. In the first method, the loudspeakers emit noise signals that ar
This paper proposes a full-band and sub-band fusion model, named as FullSubNet, for single-channel real-time speech enhancement. Full-band and sub-band refer to the models that input full-band and sub-band noisy spectral feature, output full-band and