ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain-wall roughness in GdFeCo thin films: crossover length scales and roughness exponents

127   0   0.0 ( 0 )
 نشر من قبل Pamela C. Guruciaga
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain-wall dynamics and spatial fluctuations are closely related to each other and to universal features of disordered systems. Experimentally measured roughness exponents characterizing spatial fluctuations have been reported for magnetic thin films, with values generally different from those predicted by the equilibrium, depinning and thermal reference states. Here, we study the roughness of domain walls in GdFeCo thin films over a large range of magnetic field and temperature. Our analysis is performed in the framework of a model considering length-scale crossovers between the reference states, which is shown to bridge the differences between experimental results and theoretical predictions. We also quantify for the first time the size of the depinning avalanches below the depinning field at finite temperatures.



قيم البحث

اقرأ أيضاً

The static configuration of ferroelectric domain walls was investigated using atomic force microscopy on epitaxial PbZr0.2Ti0.8O3 thin films. Measurements of domain wall roughness reveal a power law growth of the correlation function of relative disp lacements B(L) ~ L^(2zeta) with zeta ~ 0.26 at short length scales L, followed by an apparent saturation at large L. In the same films, the dynamic exponent mu was found to be ~ 0.6 from independent measurements of domain wall creep. These results give an effective domain wall dimensionality of d=2.5, in good agreement with theoretical calculations for a two-dimensional elastic interface in the presence of random-bond disorder and long range dipolar interactions.
Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughe ning of intrinsic 71{deg} stripe domains in BiFeO$_3$ thin films, we find unexpectedly high values of the roughness exponent {zeta} = 0.74 $pm$ 0.10, significantly different from those obtained for artificially written domain walls in this and other ferroelectric materials. The large value of the exponent suggests that a random field-dominated pinning, combined with stronger disorder and strain effects due to the step-bunching morphology of the samples, could be the dominant source of pinning in the system.
The creep motion of domain walls driven by external fields in magnetic thin films is described by universal features related to the underlying depinning transition. One key parameter in this description is the roughness exponent characterizing the gr owth of fluctuations of the domain wall position with its longitudinal length scale. The roughness amplitude, which gives information about the scale of fluctuations, however, has received less attention. Albeit their relevance, experimental reports of the roughness parameters, both exponent and amplitude, are scarce. We report here experimental values of the roughness parameters for different magnetic field intensities in the creep regime at room temperature for a Pt/Co/Pt thin film. The mean value of the roughness exponent is $zeta = 0.74$, and we show that it can be rationalized as an effective value in terms of the known universal values corresponding to the depinning and thermal cases. In addition, it is shown that the roughness amplitude presents a significant increase with decreasing field. These results contribute to the description of domain wall motion in disordered thin magnetic systems.
Using multiscaling analysis, we compare the characteristic roughening of ferroelectric domain walls in PZT thin films with numerical simulations of weakly pinned one-dimensional interfaces. Although at length scales up to a length scale greater or eq ual to 5 microns the ferroelectric domain walls behave similarly to the numerical interfaces, showing a simple mono-affine scaling (with a well-defined roughness exponent), we demonstrate more complex scaling at higher length scales, making the walls globally multi-affine (varying roughness exponent at different observation length scales). The dominant contributions to this multi-affine scaling appear to be very localized variations in the disorder potential, possibly related to dislocation defects present in the substrate.
102 - P. Paruch 2004
Atomic force microscopy was used to investigate ferroelectric switching and nanoscale domain dynamics in epitaxial PbZr0.2Ti0.8O3 thin films. Measurements of the writing time dependence of domain size reveal a two-step process in which nucleation is followed by radial domain growth. During this growth, the domain wall velocity exhibits a v ~ exp[-(1/E)^mu] dependence on the electric field, characteristic of a creep process. The domain wall motion was analyzed both in the context of stochastic nucleation in a periodic potential as well as the canonical creep motion of an elastic manifold in a disorder potential. The dimensionality of the films suggests that disorder is at the origin of the observed domain wall creep. To investigate the effects of changing the disorder in the films, defects were introduced during crystal growth (a-axis inclusions) or by heavy ion irradiation, producing films with planar and columnar defects, respectively. The presence of these defects was found to significantly decrease the creep exponent mu, from 0.62 - 0.69 to 0.38 - 0.5 in the irradiated films and 0.19 - 0.31 in the films containing a-axis inclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا