ترغب بنشر مسار تعليمي؟ اضغط هنا

An approach utilizing negation of extended-dimensional vector of disposing mass for ordinal evidences combination in a fuzzy environment

54   0   0.0 ( 0 )
 نشر من قبل Yuanpeng He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yuanpeng He




اسأل ChatGPT حول البحث

How to measure the degree of uncertainty of a given frame of discernment has been a hot topic for years. A lot of meaningful works have provided some effective methods to measure the degree properly. However, a crucial factor, sequence of propositions, is missing in the definition of traditional frame of discernment. In this paper, a detailed definition of ordinal frame of discernment has been provided. Besides, an innovative method utilizing a concept of computer vision to combine the order of propositions and the mass of them is proposed to better manifest relationships between the two important element of the frame of discernment. More than that, a specially designed method covering some powerful tools in indicating the degree of uncertainty of a traditional frame of discernment is also offered to give an indicator of level of uncertainty of an ordinal frame of discernment on the level of vector.



قيم البحث

اقرأ أيضاً

53 - Yuanpeng He 2021
How to combine uncertain information from different sources has been a hot topic for years. However, with respect to ordinal quantum evidences contained in information, there is no any referable work which is able to provide a solution to this kind o f problem. Besides, the method to dispel uncertainty of quantum information is still an open issue. Therefore, in this paper, a specially designed method is designed to provide an excellent method which improves the combination of ordinal quantum evidences reasonably and reduce the effects brought by uncertainty contained in quantum information simultaneously. Besides, some actual applications are provided to verify the correctness and validity of the proposed method.
81 - I.M. Son , S.I. Kwak , U.J. Han 2020
This paper presents an original method of fuzzy approximate reasoning that can open a new direction of research in the uncertainty inference of Artificial Intelligence(AI) and Computational Intelligence(CI). Fuzzy modus ponens (FMP) and fuzzy modus t ollens(FMT) are two fundamental and basic models of general fuzzy approximate reasoning in various fuzzy systems. And the reductive property is one of the essential and important properties in the approximate reasoning theory and it is a lot of applications. This paper suggests a kind of extended distance measure (EDM) based approximate reasoning method in the single input single output(SISO) fuzzy system with discrete fuzzy set vectors of different dimensions. The EDM based fuzzy approximate reasoning method is consists of two part, i.e., FMP-EDM and FMT-EDM. The distance measure based fuzzy reasoning method that the dimension of the antecedent discrete fuzzy set is equal to one of the consequent discrete fuzzy set has already solved in other paper. In this paper discrete fuzzy set vectors of different dimensions mean that the dimension of the antecedent discrete fuzzy set differs from one of the consequent discrete fuzzy set in the SISO fuzzy system. That is, this paper is based on EDM. The experimental results highlight that the proposed approximate reasoning method is comparatively clear and effective with respect to the reductive property, and in accordance with human thinking than existing fuzzy reasoning methods.
Information granules have been considered to be the fundamental constructs of Granular Computing (GrC). As a useful unsupervised learning technique, Fuzzy C-Means (FCM) is one of the most frequently used methods to construct information granules. The FCM-based granulation-degranulation mechanism plays a pivotal role in GrC. In this paper, to enhance the quality of the degranulation (reconstruction) process, we augment the FCM-based degranulation mechanism by introducing a vector of fuzzification factors (fuzzification factor vector) and setting up an adjustment mechanism to modify the prototypes and the partition matrix. The design is regarded as an optimization problem, which is guided by a reconstruction criterion. In the proposed scheme, the initial partition matrix and prototypes are generated by the FCM. Then a fuzzification factor vector is introduced to form an appropriate fuzzification factor for each cluster to build up an adjustment scheme of modifying the prototypes and the partition matrix. With the supervised learning mode of the granulation-degranulation process, we construct a composite objective function of the fuzzification factor vector, the prototypes and the partition matrix. Subsequently, the particle swarm optimization (PSO) is employed to optimize the fuzzification factor vector to refine the prototypes and develop the optimal partition matrix. Finally, the reconstruction performance of the FCM algorithm is enhanced. We offer a thorough analysis of the developed scheme. In particular, we show that the classical FCM algorithm forms a special case of the proposed scheme. Experiments completed for both synthetic and publicly available datasets show that the proposed approach outperforms the generic data reconstruction approach.
103 - Sujit Das , Samarjit Kar 2014
In group decision making (GDM) problems fuzzy preference relations (FPR) are widely used for representing decision makers opinions on the set of alternatives. In order to avoid misleading solutions, the study of consistency and consensus has become a very important aspect. This article presents a simulated annealing (SA) based soft computing approach to optimize the consistency/consensus level (CCL) of a complete fuzzy preference relation in order to solve a GDM problem. Consistency level indicates as experts preference quality and consensus level measures the degree of agreement among experts opinions. This study also suggests the set of experts for the necessary modifications in their prescribed preference structures without intervention of any moderator.
Detection of anomalous behaviors in data centers is crucial to predictive maintenance and data safety. With data centers, we mean any computer network that allows users to transmit and exchange data and information. In particular, we focus on the Tie r-1 data center of the Italian Institute for Nuclear Physics (INFN), which supports the high-energy physics experiments at the Large Hadron Collider (LHC) in Geneva. The center provides resources and services needed for data processing, storage, analysis, and distribution. Log records in the data center is a stochastic and non-stationary phenomenon in nature. We propose a real-time approach to monitor and classify log records based on sliding time windows, and a time-varying evolving fuzzy-rule-based classification model. The most frequent log pattern according to a control chart is taken as the normal system status. We extract attributes from time windows to gradually develop and update an evolving Gaussian Fuzzy Classifier (eGFC) on the fly. The real-time anomaly monitoring system has to provide encouraging results in terms of accuracy, compactness, and real-time operation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا