ﻻ يوجد ملخص باللغة العربية
We consider a general statistical inference model of finite-rank tensor products. For any interaction structure and any order of tensor products, we identify the limit free energy of the model in terms of a variational formula. Our approach consists of showing first that the limit free energy must be the viscosity solution to a certain Hamilton-Jacobi equation.
We compute the high-dimensional limit of the free energy associated with a multi-layer generalized linear model. Under certain technical assumptions, we identify the limit in terms of a variational formula. The approach is to first show that the limi
We study the mean-field Ising spin glass model with external field, where the random symmetric couplings matrix is orthogonally invariant in law. For sufficiently high temperature, we prove that the replica-symmetric prediction is correct for the fir
We consider the phase retrieval problem of reconstructing a $n$-dimensional real or complex signal $mathbf{X}^{star}$ from $m$ (possibly noisy) observations $Y_mu = | sum_{i=1}^n Phi_{mu i} X^{star}_i/sqrt{n}|$, for a large class of correlated real a
In modern settings of data analysis, we may be running our algorithms on datasets that are sensitive in nature. However, classical machine learning and statistical algorithms were not designed with these risks in mind, and it has been demonstrated th
We consider the problem of estimating a vector of discrete variables $(theta_1,cdots,theta_n)$, based on noisy observations $Y_{uv}$ of the pairs $(theta_u,theta_v)$ on the edges of a graph $G=([n],E)$. This setting comprises a broad family of statis