ﻻ يوجد ملخص باللغة العربية
We study a class of McKean-Vlasov type stochastic differential equations (SDEs) which arise from the random vortex dynamics and other physics models. By introducing a new approach we resolve the existence and uniqueness of both the weak and strong solutions for the McKean-Vlasov stochastic differential equations whose coefficients are defined in terms of singular integral kernels such as the Biot-Savart kernel. These SDEs which involve the distributions of solutions are in general not Lipschitz continuous with respect to the usual distances on the space of distributions such as the Wasserstein distance. Therefore there is an obstacle in adapting the ordinary SDE method for the study of this class of SDEs, and the conventional methods seem not appropriate for dealing with such distributional SDEs which appear in applications such as fluid mechanics.
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection an
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likeliho
We study zero-sum stochastic differential games where the state dynamics of the two players is governed by a generalized McKean-Vlasov (or mean-field) stochastic differential equation in which the distribution of both state and controls of each playe
In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly conve
This paper studies the convergence of the tamed Euler-Maruyama (EM) scheme for a class of McKean-Vlasov neutral stochastic differential delay equations (MV-NSDDEs) that the drift coefficients satisfy the super-linear growth condition. We provide the