ترغب بنشر مسار تعليمي؟ اضغط هنا

The Atari Data Scraper

152   0   0.0 ( 0 )
 نشر من قبل Brittany Davis Pierson
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reinforcement learning has made great strides in recent years due to the success of methods using deep neural networks. However, such neural networks act as a black box, obscuring the inner workings. While reinforcement learning has the potential to solve unique problems, a lack of trust and understanding of reinforcement learning algorithms could prevent their widespread adoption. Here, we present a library that attaches a data scraper to deep reinforcement learning agents, acting as an observer, and then show how the data collected by the Atari Data Scraper can be used to understand and interpret deep reinforcement learning agents. The code for the Atari Data Scraper can be found here: https://github.com/IRLL/Atari-Data-Scraper



قيم البحث

اقرأ أيضاً

Intelligent agents need to generalize from past experience to achieve goals in complex environments. World models facilitate such generalization and allow learning behaviors from imagined outcomes to increase sample-efficiency. While learning world m odels from image inputs has recently become feasible for some tasks, modeling Atari games accurately enough to derive successful behaviors has remained an open challenge for many years. We introduce DreamerV2, a reinforcement learning agent that learns behaviors purely from predictions in the compact latent space of a powerful world model. The world model uses discrete representations and is trained separately from the policy. DreamerV2 constitutes the first agent that achieves human-level performance on the Atari benchmark of 55 tasks by learning behaviors inside a separately trained world model. With the same computational budget and wall-clock time, Dreamer V2 reaches 200M frames and surpasses the final performance of the top single-GPU agents IQN and Rainbow. DreamerV2 is also applicable to tasks with continuous actions, where it learns an accurate world model of a complex humanoid robot and solves stand-up and walking from only pixel inputs.
Model-free deep reinforcement learning is sample inefficient. One hypothesis -- speculated, but not confirmed -- is that catastrophic interference within an environment inhibits learning. We test this hypothesis through a large-scale empirical study in the Arcade Learning Environment (ALE) and, indeed, find supporting evidence. We show that interference causes performance to plateau; the network cannot train on segments beyond the plateau without degrading the policy used to reach there. By synthetically controlling for interference, we demonstrate performance boosts across architectures, learning algorithms and environments. A more refined analysis shows that learning one segment of a game often increases prediction errors elsewhere. Our study provides a clear empirical link between catastrophic interference and sample efficiency in reinforcement learning.
We propose a new approach to visualize saliency maps for deep neural network models and apply it to deep reinforcement learning agents trained on Atari environments. Our method adds an attention module that we call FLS (Free Lunch Saliency) to the fe ature extractor from an established baseline (Mnih et al., 2015). This addition results in a trainable model that can produce saliency maps, i.e., visualizations of the importance of different parts of the input for the agents current decision making. We show experimentally that a network with an FLS module exhibits performance similar to the baseline (i.e., it is free, with no performance cost) and can be used as a drop-in replacement for reinforcement learning agents. We also design another feature extractor that scores slightly lower but provides higher-fidelity visualizations. In addition to attained scores, we report saliency metrics evaluated on the Atari-HEAD dataset of human gameplay.
Recent years saw a plethora of work on explaining complex intelligent agents. One example is the development of several algorithms that generate saliency maps which show how much each pixel attributed to the agents decision. However, most evaluations of such saliency maps focus on image classification tasks. As far as we know, there is no work that thoroughly compares different saliency maps for Deep Reinforcement Learning agents. This paper compares four perturbation-based approaches to create saliency maps for Deep Reinforcement Learning agents trained on four different Atari 2600 games. All four approaches work by perturbing parts of the input and measuring how much this affects the agents output. The approaches are compared using three computational metrics: dependence on the learned parameters of the agent (sanity checks), faithfulness to the agents reasoning (input degradation), and run-time. In particular, during the sanity checks we find issues with two approaches and propose a solution to fix one of those issues.
Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future (image-)frames are dependent on contr ol variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens of objects with one or more objects being controlled by the actions directly and many other objects being influenced indirectly, can involve entry and departure of objects, and can involve deep partial observability. We propose and evaluate two deep neural network architectures that consist of encoding, action-conditional transformation, and decoding layers based on convolutional neural networks and recurrent neural networks. Experimental results show that the proposed architectures are able to generate visually-realistic frames that are also useful for control over approximately 100-step action-conditional futures in some games. To the best of our knowledge, this paper is the first to make and evaluate long-term predictions on high-dimensional video conditioned by control inputs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا