ترغب بنشر مسار تعليمي؟ اضغط هنا

Reply to Comment on Unconventional enhancement of ferromagnetic interactions in Cd-doped GdFe$_2$Zn$_{20}$ single crystals studied by ESR and $^{57}$Fe Mossbauer spectroscopies

110   0   0.0 ( 0 )
 نشر من قبل Julian Munevar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The authors reply to the Comment arXiv:2104.03770 by P. Canfield et. al.



قيم البحث

اقرأ أيضاً

In the recent publication, Phys. Rev. B 102, 144420 (2020), Cabrera-Baez et al. present a study of the effects of Cd-substitution for Zn in the ferromagnetic compound GdFe2Zn20. As part of this paper, they claim that for GdFe2Zn18.6Cd1.4 the effectiv e moment of Gd is reduced by 25% and the saturated moment of Gd is reduced by over 40%. We regrew representative members of the GdFe2Zn(20-x)Cdx series and did not find any such reductions. In addition, we measured several crystals from the growth batch that was used by Cabrera-Baez et al. and did not see such reductions. Although there is a modest increase in TC with Cd substitution, there is no significant change in the Gd effective moment or the saturated moment associated with the low temperature ferromagnetic state.
We have performed detailed $^{57}$Fe Mossbauer spectroscopy measurements on Ba$_{0.78}$K$_{0.22}$Fe$_2$As$_2$ and BaFe$_{2-x}$Ni$_x$As$_2$ single crystal mosaics showing antiferromagnetic ordering below $T_N$ with superconductivity below $T_C$. Analy sis of the Mossbauer spectra shows a decrease in the magnetic hyperfine (hf) field but no change in the magnetic volume fraction below $T_C$. This clearly indicates the coexistence of magnetism and superconductivity in these compounds. The decrease in the magnetic hf field below $T_C$ depends on the difference between $T_N$ and $T_C$, being the largest for $T_N$ close to $T_C$. Two different explanations for this observation are given. We also find that the non-magnetic volume fraction below $T_N$ correlates with the Ni doping $x$, being large for high $T_C$ and small for high $T_N$.
Kondo insulator FeSb$_2$ with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity $kappa$. Here we studied the influence of different chemical substitutions at Fe and Sb site on thermal conductivity and thermoelectric effect in high quality single crystals. At $5%$ of Te doping at Sb site thermal conductivity is suppressed from $sim 250$ W/Km in undoped sample to about 8 W/Km. However, Cr and Co doping at Fe site suppresses thermal conductivity more slowly than Te doping, and even at 20$%$ Cr/Co doping the thermal conductivity remains $sim 30$ W/Km. The analysis of different contributions to phonon scattering indicates that the giant suppression of $kappa$ with Te is due to the enhanced point defect scattering originating from the strain field fluctuations. In contrast, Te-doping has small influence on the correlation effects and then for small Te substitution the large magnitude of the Seebeck coefficient is still preserved, leading to the enhanced thermoelectric figure of merit ($ZTsim 0.05$ at $sim 100$ K) in Fe(Sb$_{0.9}$Te$_{0.1}$)$_2$.
The magnetic ordering of superconducting single crystals of K_0.85Fe_1.83Se_2.09 has been studied between 10K and 550K using 57-Fe Mossbauer spectroscopy. Despite being superconducting below T_sc ~30K, the iron sublattice in K_0.85Fe_1.83Se_2.09 clea rly exhibits magnetic order from well below T_sc to its Neel temperature of T_N = 532 +/- 2K. The iron moments are ordered perpendicular to the single crystal plates, i.e. parallel to the crystal c-axis. The order collapses rapidly above 500K and the accompanying growth of a paramagnetic component suggests that the magnetic transition may be first order, which may explain the unusual temperature dependence reported in recent neutron diffraction studies.
Temperature dependent magnetization, muon spin rotation and $^{57}$Fe Mossbauer spectroscopy experiments performed on crystals of intermetallic FeGa$_{3-y}$Ge$_{y}$ ($y=0.11,0.14,0.17,0.22,0.27$, $0.29,0.32$) are reported. Whereas at $y=0.11$ even a sensitive magnetic microprobe such as $mu$SR does not detect magnetism, all other samples display weak ferromagnetism with a magnetic moment of up to 0.22 $mu_B$ per Fe atom. As a function of doping and of temperature a crossover from short range to long range magnetic order is observed, characterized by a broadly distributed spontaneous internal field. However, the $y=0.14$ and $y=0.17$ remain in the short range ordered state down to the lowest investigated temperature. The transition from short range to long range order appears to be accompanied by a change of the character of the spin fluctuations, which exhibit spin wave excitations signature in the LRO part of the phase diagram. Mossbauer spectroscopy for $y=0.27$ and 0.32 indicates that the internal field lies in the plane perpendicular to the crystallographic $c$ axis. The field distribution and its evolution with doping suggest that the details of the Fe magnetic moment formation and the consequent magnetic state are determined not only by the dopant concentration but also by the way the replacement of the Ga atoms surrounding the Fe is accomplished.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا