ﻻ يوجد ملخص باللغة العربية
We report the first detection in space of the two doubly deuterated isotopologues of methyl acetylene. The species CHD2CCH and CH2DCCD were identified in the dense core L483 through nine and eight, respectively, rotational lines in the 72-116 GHz range using the IRAM 30m telescope. The astronomical frequencies observed here were combined with laboratory frequencies from the literature measured in the 29-47 GHz range to derive more accurate spectroscopic parameters for the two isotopologues. We derive beam-averaged column densities of (2.7 +/- 0.5)e12 cm-2 for CHD2CCH and (2.2 +/- 0.4)e12 cm-2 for CH2DCCD, which translate to abundance ratios CH3CCH/CHD2CCH = 34 +/- 10 and CH3CCH/CH2DCCD = 42 +/- 13. The doubly deuterated isotopologues of methyl acetylene are only a few times less abundant than the singly deuterated ones, concretely around 2.4 times less abundant than CH3CCD. The abundances of the different deuterated isotopologues with respect to CH3CCH are reasonably accounted for by a gas-phase chemical model in which deuteration occurs from the precursor ions C3H6D+ and C3H5D+, when the ortho-to-para ratio of molecular hydrogen is sufficiently low. This points to gas-phase chemical reactions, rather than grain-surface processes, as responsible for the formation and deuterium fractionation of CH3CCH in L483. The abundance ratios CH2DCCH/CH3CCD = 3.0 +/- 0.9 and CHD2CCH/CH2DCCD = 1.25 +/- 0.37 observed in L483 are consistent with the statistically expected values of three and one, respectively, with the slight overabundance of CHD2CCH compared to CH2DCCD being well explained by the chemical model.
High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the
Methyl formate, HCOOCH$_3$, and many of its isotopologues have been detected in astrophysical regions with considerable abundances. However, the recipe for the formation of this molecule and its isotopologues is not yet known. In this work, we attemp
Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth. In th
We report the first detection of triply-deuterated methanol, with 12 observed transitions, towards the low-mass protostar IRAS 16293-2422, as well as multifrequency observations of 13CH3OH, used to derive the column density of the main isotopomer CH3
Collisional de-excitation rates of partially deuterated molecules are different from the fully hydrogenated species because of lowering of symmetry. We compute the collisional (de)excitation rates of ND2H by ground state para-H2, extending the previo